Skip to main content

Finite Dimensions

  • Chapter
Numerical Range

Part of the book series: Universitext ((UTX))

  • 973 Accesses

Abstract

The theory of numerical range in finite-dimensional spaces is very rich and varied. In fact, a lot of recent research has been focused on the numerical range, and its variations, in finite dimensions. Avoiding the evidently impossible task of doing justice to all of the work done in this field, we attempt to present a representative selection and hope that it covers all the basic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

Notes and References for Section 5.1

Notes and References for Section 5.2

  • S. Gersgorin (1931). “über die Abrenzung der Eigenwerte einer Matrix,” Izv. Akad. Nauk SSSR (Ser. Mat.) 7, 749–754.

    Google Scholar 

  • F. Bauer (1968). “Fields of Values and Gershgorin Disks,” Numerische Math. 12, 91–95.

    Article  MATH  Google Scholar 

  • C. R. Johnson (1973). “A Gersgorin inclusion set for the field of values of a finite matrix,” Proc. Amer. Math. Soc. 41, 57–60.

    MathSciNet  MATH  Google Scholar 

  • A. I. Mees and D. P. Atherton (1979). “Domains Containing the Field of Values of a Matrix,” Lin. Alg. Appl. 26, 289–296.

    Article  MathSciNet  MATH  Google Scholar 

  • V. N. Solov’ev (1983). “A Generalization of Gersgorin’s Theorem,” Izv. Akad. Nauk. SSSR Ser. Mat. 47, 1285–1302; English translation in Math. USSR Izv. 23 (1984)

    Google Scholar 

  • A. A. Abdurakmanov (1988). “The Geometry of the Hausdorff Domain in Localization Problems for the Spectrum of Arbitrary Matrices,” Math. USSR Sbornik. 59, 39–51.

    Article  Google Scholar 

  • R. A. Brualdi and S. Mellendorf (1993). “Regions in the Complex Plane Containing the Eigenvalues of a Matrix,” Amer. Math. Monthly 101, 975–985.

    Article  MathSciNet  Google Scholar 

Notes and References for Section 5.3

  • M. Marcus and B. N. Shure (1979). “The Numerical Range of Certain 0, 1-Matrices,” Lin. and Multilin. Alg. 7, 111–120.

    Article  MathSciNet  MATH  Google Scholar 

  • K. R. Davidson and J. A. R. Holbrook (1988). “Numerical Radii of Zero—One Matrices,” Michigan Math. J. 35, 261–267.

    Article  MathSciNet  MATH  Google Scholar 

  • A. A. Abdurakmanov (1988). “The Geometry of the Hausdorff Domain in Localization Problems for the Spectrum of Arbitrary Matrices,” Math. USSR Sbornik. 59, 39–51.

    Article  Google Scholar 

  • C. Johnson (1974). “Gershgorin Sets and the Field of Values,” J. Math. Anal. Appl. 45, 416–419.

    Article  MathSciNet  MATH  Google Scholar 

  • C. R. Johnson, I. M. Spitkovsky and S. Gottlieb (1994). “Inequalities Involving the Numerical Radius,” Linear and Multilinear Algebra 37, 1324.

    MathSciNet  Google Scholar 

Notes and References for Section 5.4

  • J. Schur (1911). “Bemerkungen zur Theorie der Beschränkten Bilinearformen mit Unendlich vielen Veränderlichen,” J. Reine Angew. Math. 140, 1–28.

    Article  MATH  Google Scholar 

  • R. A. Horn (1990). “The Hadamard Product,” Proc. Symposia in Appl. Math. 40, 87–120.

    MathSciNet  Google Scholar 

  • T. Ando, R. A. Horn and C. R. Johnson (1987). “The Singular Values of a Hadamard Product: A Basic Inequality,” Lin. Multilin. Alg. 21, 345–365.

    Article  MathSciNet  MATH  Google Scholar 

Notes and References for Section 5.5

  • C. K. Li (1994). “C-Numerical Ranges and C-Numerical Radii,” Lin. Multilin. Alg. 37, 51–82.

    Article  MATH  Google Scholar 

  • M. Goldberg (1979). “On Certain Finite Dimensional Numerical Ranges and Numerical Radii,” Lin. Multilin. Alg. 7, 329–342.

    Article  MATH  Google Scholar 

  • M. Goldberg and E. G. Straus (1979). “Norm Properties of C-Numerical Radii,” Lin. Alg. Appl. 24, 113–131.

    Article  MathSciNet  MATH  Google Scholar 

  • N. Bebiano and J. da Providencia (1994). “Some Geometrical Properties of the Numerical Range of a Normal Matrix,” Lin. Multilin. Alg. 37, 83–92.

    Article  MATH  Google Scholar 

  • M. Goldberg and E. G. Straus (1977). “Elementary Inclusion Relations for Generalized Numerical Ranges,” Lin. Alg. Appl. 18, 11–24.

    Article  MathSciNet  Google Scholar 

  • R. Westwick (1975). “A Theorem on Numerical Range,” Lin. Multilin. Alg. 2, 311–315.

    Article  MathSciNet  Google Scholar 

  • Y. T. Poon (1980). “Another Proof of a Result of Westwick,” Lin. Multilin. Alg. 9, 35–37.

    Article  MathSciNet  MATH  Google Scholar 

  • N. K. Tsing (1981). “On the Shape of the Generalized Numerical Range,” Lin. Multilin. Alg. 10, 173–182.

    Article  MathSciNet  MATH  Google Scholar 

  • M. S. Jones (1991), “A Note on the Shape of the Generalized C-Numerical Range,” Linear and Multilinear Algebra 31, 81–84.

    Article  Google Scholar 

  • G. Hughes (1990). “A Note on the Shape of the Generalized Numerical Range,” Linear and Multilinear Algebra, 26, 43–47.

    Article  MathSciNet  MATH  Google Scholar 

  • N. K. Tsing and W. S. Cheung (1996). “Star-Shapedness of the Generalized Numerical Ranges,” in Abstracts 3rd Workshop on Numerical Ranges and Numerical Radii ( T. Ando and K. Okubo, eds.), Sapporo, Japan.

    Google Scholar 

  • M. N. Spijker (1993). “Numerical Ranges and Stability Estimates,” Appl Num. Math. 13, 241–249.

    Article  MathSciNet  MATH  Google Scholar 

  • H. W. J. Lenferink and M. N. Spijker (1990). “A Generalization of the Numerical Range of a Matrix,” Lin. Alg. Appl. 140, 251–266.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Stampfli (1970). “The Norm of a Derivation,” Pacific Journal of Math. 33, 737–747.

    MathSciNet  MATH  Google Scholar 

  • J. Kyle (1977). “Wb is Convex,” Pacific Journal of Math. 72, 483–485.

    MathSciNet  Google Scholar 

  • K. Das, S. Mazumdar and B. Sims (1987). “Restricted Numerical Range and Weak Convergence on the Boundary of the Numerical Range,” J. Math. Phys. Sci. 21, 35–41.

    MathSciNet  MATH  Google Scholar 

  • Y. Poon (1980). “The Generalized k-Numerical Range,” Linear and Multilinear Algebra 9, 181–186.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Marcus (1979). “Some Combinatorial Aspects of the Generalized Numerical Range,” Ann. New York Acad. Sci. 319, 368–376.

    Article  Google Scholar 

  • Y. Au-Yeung and N. Tsing (1983). “A Conjecture of Marcus on the Generalized Numerical Range,” Linear and Multilinear Algebra 14, 235–239.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Man (1987). “The Convexity of the Generalized Numerical Range,” Linear and Multilinear Algebra 20, 229–245.

    Article  MathSciNet  MATH  Google Scholar 

  • B. D. Saunders and H. Schneider (1976). “A Symmetric Numerical Range for Matrices,” Numer. Math. 26, 99–105.

    Article  MathSciNet  MATH  Google Scholar 

Notes and References for Section 5.6

  • C. Johnson (1978). Numerical Determination of the Field of Values of a General Complex Matrix,” SIAM J Numer. Anal. 15, 595–602.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Marcus (1987). “Computer Generated Numerical Ranges and Some Resulting Theorems,” Linear and Multilin. Alg. 20, 121–157.

    Article  MATH  Google Scholar 

  • L. N. Trefethen (1990). “Approximation Theory and Numerical Linear Algebra,” in Algorithms for Approximation. II, eds. J. Mason and M. Cox, Chapman, London, 336–360.

    Google Scholar 

  • M. Eiermann (1993). “Fields of Values and Iterative Methods,” Linear Alg. é4 Applic. 180, 167–197.

    Article  MathSciNet  MATH  Google Scholar 

  • D. M. Young (1971). Iterative Solution of large Linear Systems, Academic Press, New York.

    MATH  Google Scholar 

  • K. Gustafson and R. Hartman (1985). “Graph Theory and Fluid Dynamics,” SIAM J. Alg. Disc. Math. 6, 643–656

    Article  MathSciNet  MATH  Google Scholar 

  • K. Gustafson (1987). Partial Differential Equations, 2nd Ed., Wiley, New York, 311.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Gustafson, K.E., Rao, D.K.M. (1997). Finite Dimensions. In: Numerical Range. Universitext. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8498-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8498-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94835-5

  • Online ISBN: 978-1-4613-8498-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics