Well Posed Optimal Control Problems: A Perturbation Approach

  • Tullio Zolezzi
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 78)

Abstract

Tikhonov and Hadamard well posedness. Let X be a convergence space and

$$ J:X \to ( - \infty , + \infty ] $$

a proper extended-real valued function on X. The (global) minimization problem (X, J) is called Tikhonov well posed iff there exists exactly one global minimizer x* and every minimizing sequence for (X, J) converges to x*; Hadamard well posed iff there exists exactly one global minimizer x* and, roughly speaking, x* depends continuously upon problem’s data.

Keywords

Posit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. TIKHONOV, On the stability of the functional minimization method, USSR Comput. Math, and Math. Phys. 6 (1966), 26–33.Google Scholar
  2. [2]
    A. TIKHONOV, Methods for the regularization of optimal control problems, Soviet Math. Dokl. 6 (1965), 761–763.MATHGoogle Scholar
  3. [3]
    J. HADAMARD, Sur le problèmes aux dérivées partielles et leur signification physique, Bull. Univ. Princeton 13 (1902), 49–52.MathSciNetGoogle Scholar
  4. [4]
    R. LUCCHETTI, F. PATRONE, A characterization of Tikhonov well posedness for minimum problems with application to variational inequalities, Numer. Funct. Anal. Optim. 3 (1981), 461–476.MATHCrossRefMathSciNetGoogle Scholar
  5. R. LUCCHETTI, F. PATRONE, Some properties of “well-posed” variational inequalities governed by linear operators., Numer. Funct. Anal. Optim. 5 (1982–83), 349–361.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. DONTCHEV, T. ZOLEZZI, Well posed optimization problems, Lecture Notes in Math. 1543 (1993), Springer, Berlin.Google Scholar
  7. [7]
    E. ASPLUND, R. ROCKAPELLAR, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443–467.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. FLTZPATRICK, Metric projection and the differentiability of distance functions, Bull. Austral. Math. Soc. 22 (1980), 291–312.CrossRefMathSciNetGoogle Scholar
  9. [9]
    W. FLEMING, The Cauchy problem for a nonlinear first-order partial differential equation, J. Differential Equations 5 (1969), 515–530.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    W. FLEMING, R. RISHEL, Deterministic and stochastic optimal control, Springer, New York, 1975.MATHGoogle Scholar
  11. [11]
    F. CLARKE, P. LOEWEN, The value function in optimal control: sensitivity, controllability, and time-optimality, SIAM J. Control Optim. 24 (1986), 243–263.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    W. FLEMING, M. SONER, Controlled Markov processes and viscosity solutions, Springer, New York, 1993.MATHGoogle Scholar
  13. [13]
    F. CLARKE, P. WOLENSKI, The sensitivity of optimal control problems to time delay, SIAM J. Control Optim. 29 (1991), 1176–1215.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    T. ZOLEZZI, Well posedness criteria in optimization with application to the calculus of variations, Submitted.Google Scholar
  15. [15]
    F. CLARKE, Perturbed optimal control problems, IEEE Trans. Autom. Control AC-31 (1986), 535–542.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Tullio Zolezzi
    • 1
  1. 1.Dipartimento di MatematicaUniversita’ di GenovaGenovaItaly

Personalised recommendations