Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 146))

Abstract

Chlorination of naturally occurring phenols has taken place perpetually, but since the introduction of pentachlorophenol (PCP) as a commercial antiseptic in 1936, the worldwide production of chlorophenols has rapidly increased with an elevated environmental burden as a result. Today, chlorophenols (CP) are widespread in the environment. Even in the most remote natural environments, analyses have shown the presence of chlorophenols in both aquatic and terrestrial food chains. Previously reported reviews on chlorophenols have mainly focused on the aquatic environment or on the toxicological aspects of chlorophenols (e.g., Ahlborg and Thunberg 1980; Bevenue and Beckman 1967; WHO 1987, 1989) mainly due to the preponderance of information in these areas. However, partitioning models have shown that more than 95% of the load of pentachlorophenol is associated with the soil (Hattemer-Frey and Travis 1989; Shiu et al. 1994; Wild et al. 1992). This review is solely committed to the fate and ecotoxicological effects of chlorophenols in the terrestrial environment. After a short review of the fate and bioavailability of chlorophenols in soil, the major parts of this paper present ecotoxicological data [no-effect concentration/effect concentration (NOEC/EC) values] of chlorophenols relating to soil flora and fauna. The data were collected from laboratory and field experiments published in international papers. Finally, a short evaluation of the ecological risk of chlorophenols in the terrestrial environment and the risk assessment in a few countries are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adema DMM, Henzen L (1989) A comparison of plant toxicities of some industrial chemicals in soil culture and soilless culture. Ecotoxicol Environ Saf 18: 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Ahlborg UG, Thunberg TM (1980) Chlorinated phenols: occurence, toxicity, metabolism, and environmental impact. CRC Crit Rev Toxicol 7: 1–36.

    Article  CAS  Google Scholar 

  • Baker MD, Mayfield CI (1980) Microbial and non-biological decomposition of chlorophenols and phenol in soil. Water Air Soil Pollut 13: 411–424.

    Article  CAS  Google Scholar 

  • Bellin CA, O’Connor GA (1990) Plant uptake of pentachlorophenol from sludgeamended soils. J Environ Qual 19: 298–302.

    Google Scholar 

  • Bevenue A, Beckman H (1967) Pentachlorophenol: a discussion of its properties and its occurence as a residue in human and animal tissues. Residue Rev 19: 83–134.

    PubMed  CAS  Google Scholar 

  • Bornkamm R, Meyer G (1985) Die wirkung chemischer belastung auf die stadtvege- tationen. Specielle Berichte Berlin Kern Forschung Anlage Jülich 296: 130–145.

    Google Scholar 

  • Boyde SA, Mikesell MD, Lee J (1989) Chlorophenols in soils. In: Sawhney BL, Brown K (eds) Reactions and movement of organic chemicals in soils. Spec Pub 22. Soil Science Society of America, Madison, WI, pp 209–228.

    Google Scholar 

  • Bryant SE, Schultz TW (1994) Toxicological assessment of biotransformation products of pentachlorophenol: Tetrahymena population growth impairment. Arch Environ Contam Toxicol 26: 299–303.

    Article  PubMed  CAS  Google Scholar 

  • Butte W, Denker J, Kirsch M, Höpner T (1985) Pentachlorophenol and tetrachlorophenol in Wadden sediment and clams Mya arenaria of the Jadebusen after a 14-year period of wastewater discharge containing pentachlorophenol. Environ Pollut (Ser B) 9: 29–39.

    Article  CAS  Google Scholar 

  • Cascorbi I, Ahlers J (1989) Correlation between the lipophilicity of substituted phenols and their inhibition of the Na+/K+-ATPase of chinese hamster ovary cells. Toxicology 58: 197–210.

    Article  PubMed  CAS  Google Scholar 

  • Cascorbi I, Forêt M (1991) Interaction of xenobiotics on the glycose-transport system and the Na+/K+-ATPase of human skin fibroblasts. Ecotoxicol Environ Saf 21: 38–46.

    Article  PubMed  CAS  Google Scholar 

  • Casterline JL, Barnett NM, Ku Y (1985) Uptake, translocation and transformation of pentachlorophenol in soyabean and spinach plants. Environ Res 37: 101–118.

    Article  PubMed  CAS  Google Scholar 

  • Cirelli DP (1978) Patterns of pentachlorophenol usage in the United States of America—an overview. The environmental fate of 14C-Pentachlorophenol in laboratory model ecosystems. In: Rao KR (ed) Pentachlorophenol. Chemistry, Pharmacology, and Environmental Toxicology. Plenum Press, New York, pp 13–18.

    Google Scholar 

  • Cohen E, Gamliel A, Katan J (1988) The fungitoxicity of chlorophenols to the pathogenic fungi Fusarium oxysporum and Rhizoctonia solani: a SAR study. Pestic Sci 24: 139–146.

    Article  CAS  Google Scholar 

  • Drong K, Lamprecht I (1993) Toxicological studies of energy flows in ecological systems. Pure Appl Chem 65: 1967–1972.

    Article  CAS  Google Scholar 

  • Fahrig R, Nilsson C-A, Rappe C (1978) Genetic activity of chlorophenols and chlorophenol impurities. In: Kao KR (ed) Pentachlorophenol. Chemistry, Pharmacology and Environmental Toxicology. Plenum Press, New York, pp 325–338.

    Google Scholar 

  • Ferro AM, Sims RC, Bugbee B (1994) Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23: 272–279.

    Article  PubMed  CAS  Google Scholar 

  • Fisher SW, Wadleigh RW (1986) Effects of pH on the acute toxicity and uptake of 14C pentachlorophenol in the midge Chironomus riparius. Ecotoxicol Environ Saf 11: 1–8.

    Article  PubMed  Google Scholar 

  • Ghoshal S, Banerji SK, Bajpai RK (1992) Role of photodegradation in pentachlorophenol decontamination in soils. Ann NY Acad Sci 665: 412–422.

    Article  CAS  Google Scholar 

  • Goats GC, Edwards CA (1988) The prediction of field toxicity of chemicals to earthworms by laboratory methods. In: Edwards CA, Neuhauser EF (eds) Earthworms in Waste and Environmental Management. SPB Academic, The Hague, Netherlands, pp 283–294.

    Google Scholar 

  • Gruttke H, Kratz W, Weigmann G, Haque A (1988) Terrestrial model food chain and Environmental Chemicals. I. Transfer of 14C pentachlorophenate between springtails and carabids. Ecotoxicol Environ Saf 15: 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Haimi J, Salminen J, Huhta V, Knuutinen J, Palm H (1992) Bioaccumulation of organochlorine compounds in earthworms. Soil Biol Biochem 24: 1699–1703.

    Article  CAS  Google Scholar 

  • Haimi J, Molin S (1994) Responses of two earthworm populations with different exposure histories to chlorophenolic contamination. Poster presentation, Third European Conference on Ecotoxicology, August 28–31, 1994, Zürich, Switzerland.

    Google Scholar 

  • Haque A, Scheunert I, Korte F (1978) Isolation and identification of a metabolite of pentachlorophenol 14C in rice plants. Chemosphere 1: 65–69.

    Article  Google Scholar 

  • Haque A, Gruttke H, Kratz W, Kielhorn U, Weigman G, Meyer G, Bornkamm R, Schuphan I, Ebing W (1988) Environmental fate and distribution of sodium-14Cpentachlorophenate in a section of urban wasteland ecosystem. Sci Total Environ 68: 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Harvey WA, Crafts AS (1950) Toxicity of pentachlorophenol and its sodium salt in three Yolo soils. Hilgardia 21: 487–498.

    Google Scholar 

  • Hattemer-Frey HA, Travis CC (1989) Pentachlorophenol: environmental partitioning and human exposure. Arch Environ Contam Toxicol 18: 482–489.

    Article  PubMed  CAS  Google Scholar 

  • Heimbach F (1984) Correlation between three methods for determining the toxicity of chemicals to earthworms. Pestic Sci 15: 605–611.

    Article  CAS  Google Scholar 

  • Howard PH (1989) Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol 1. Large Production and Priority Pollutants. Lewis Publishers, Chelsea, MI.

    Google Scholar 

  • Hulzebos EM, Adema DMM, Dirven-van Breemen EM, Henzen L, van Dis WA, Herbold HA, Hoekstra JA, Baerselman R, van Gestel CAM (1993) Phytotoxicity studies with Lactuca sativa in soil and nutrient solution. Environ Toxicol Chem 12: 1079–1094.

    CAS  Google Scholar 

  • Ide A, Niki Y, Sakamoto F, Watanabe I, Watanabe H (1972) Decomposition of pentachiorphenol in paddy soil. Agric Biol Chem 36: 1937–1944.

    Article  CAS  Google Scholar 

  • Ishizawa S, Toyoda H, Matsugushi T (1961a) Effects of DD, EDB and PCP upon microorganisms and their activities in soil. Part I. Effects on microflora. Soil Plant Food 6: 145–155.

    Google Scholar 

  • Ishizawa S, Tanabe I, Matsuguchi T (1961b) Effects of DD, EDB and PCP upon microorganisms and their activities in soil. Part II. Effects om microbial activity. Soil Plant Food 6: 156–163.

    Google Scholar 

  • Jensen J, Folker-Hansen P (1995) Soil quality criteria for selected organic compounds. Working Report (Arbejdsrapport) no. 47, Danish Environmental Protecting Agency, Copenhagen, Denmark.

    Google Scholar 

  • Kappers FI, van Eijk JAAMW (1987) Effects on free-living soil nematodes of long-term exposure to chlorinated phenols in laboratory microcosms. Pharma Weekbl 9: 353.

    Google Scholar 

  • Kaufman DD (1978) Degradation of pentachlorophenol in soil and soil microorganisms. In: Rao KR (ed) Pentachlorophenol. Chemistry, Pharmacology, and Environmental Toxicology. Plenum Press, New York, pp 27–39.

    Google Scholar 

  • Kitunen VH, Valo RJ, Salkinoja-Salonen MS (1987) Contamination of soil around wood-preserving facilities by polychlorinated aromatic compounds. Environ Sci Technol 21: 96–101.

    Article  CAS  Google Scholar 

  • Knuutinen J, Palm H, Hakala H, Haimi J, Huhta V, Salminen J (1990) Polychlorinated phenols and their metabolites in soil and earthworms of sawmill environment. Chemosphere 20: 609–623.

    Article  CAS  Google Scholar 

  • Kuwatsuka S, Igarashi M (1975) Degradation of PCP in soils. II. Relationship between the degradation of PCP and the properties of soils, and the identification of the degradation products of PCP. Soil Sci Plant Nutr 21: 405–414.

    CAS  Google Scholar 

  • Lagas P (1988) Sorption of chlorophenols in the soil. Chemosphere 17: 205–216.

    Article  CAS  Google Scholar 

  • Li S, Paeologou M, Purdy WC (1991) Determination of the acidity constants of chlorinated phenolic compounds by liquid chromatography. J Chromatogr Sci 29: 66–69.

    CAS  Google Scholar 

  • Lu P-Y, Metcalf RL, Cole LK (1978) The environmental fate of 14Cpentachlorophenol in laboratory model ecosystems. In: Rao KR (ed) Pentachlorophenol. Chemistry, Pharmacology, and Environmental Toxicology. Plenum Press, New York, pp 53–63.

    Google Scholar 

  • Ma K-C, Shiu W-Y, Mackay D (1993) Aqueous solubilities of chlorinated phenols at 25 °C. J Chem Eng Data 38: 364–366.

    Article  CAS  Google Scholar 

  • Miljostyrelsen (Danish EPA) (1995) Toksikologiske kvalitetskriterier for jord og vand (Toxicological quality criteria for soil and drinkingwater) (in Danish). Projekt om jord og grundvand no. 12, fra Miljostyrelsen, Copenhagen, Denmark.

    Google Scholar 

  • Mitsui S, Watanabe I, Honma M, Honda S (1964) The effect of pesticides on the denitrification in paddy soil. Soil Sci Plant Nutr 10: 15–23 (107–115).

    Google Scholar 

  • Moulton MP, Schultz TW (1986) Comparisons of several structure-toxicity relationships for chiorophenols. Aquat Toxicol 8: 121–128.

    Article  CAS  Google Scholar 

  • Murthy NBK, Kaufman DD, Fries GF (1979) Degradation of pentachlorophenol ( PCP) in aerobic and anaerobic soil. J Environ Sci Health B 14: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Neuhauser EF, Durkin PR, Malecki MR, Anatra M (1986) Comparative toxicity of ten organic chemicals to four earthworm species. Comp Biochem Physiol C 83: 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Paasivirta J, Heinola K, Humpi T, Karjalainen A, Knuutinen J, Mäntykoski K, Paukku R, Piilola T, Surma-ASho K, Tarhanen J, Welling L, Vihonen H (1985) Polychlorinated phenols, guaacols and catechols in environment. Chemosphere 14: 469–491.

    Article  CAS  Google Scholar 

  • Puolanne, J (1991) Strategies and means of solving the problem of soil contamination in Finland. Paper presented at the conference: “Deteccion y recuperacion de suelos contaminados,” Madrid, May, 1991.

    Google Scholar 

  • Ravanel P, Taillandier G, Tissut M, Benoit-Guyod JL (1985) Effect of chlorophenols on isolated plant mitochondria activities: a QSAR study. Ecotoxicol Environ Saf 9: 300–320.

    Article  PubMed  CAS  Google Scholar 

  • Richards DJ, Shieh WK (1986) Biological fate of organic priority pollutants in the aquatic environment. Water Res 20: 1077–1090.

    Article  CAS  Google Scholar 

  • Römbke J, Bauer C, Marschner A (1994) Verhalten and Wirkungen von sechs umweltchemikalien in terrestrichen labortests. In: Alef K, Blum W, Schwarz S, Riss a, Fiedler H, Hutzinger O (eds) ECOINFORMA. Umweltbundesamt, 59 September 1994. 3. Fachtagung and ausstellung für umweltinformation and umweltkommunikation. Band 6: Bodenkontamination, Bodensanierung, Bodeninformationssysteme. 6: 269–281.

    Google Scholar 

  • Rouse JD, Sabatini DA, Suflita JM, Harwell JH (1994) Influence of surfactants on microbial degradation of organic compounds. Crit Rev Environ Sci Technol 24: 325–370.

    Article  CAS  Google Scholar 

  • Sato K (1985) Effect of a pesticide, pentachlorophenol (PCP), on soil microflora. II. Effect of PCP on bacterial flora in soil percolated with glycine or water. J Genet Appl Microbiol 31: 197–210.

    Article  CAS  Google Scholar 

  • Sato K (1987) Effect of increasing pentachlorophenol (PCP) concentrations on bacterial populations in glycine-pecolated soils. Biol Fertil Soils 5: 1–5.

    Article  CAS  Google Scholar 

  • Schäfer W, Sanderman H (1988) Metabolism of pentachlorophenol in cell suspension cultures of wheat (Triticum aestivum). Tetrachlorocatechol as primary metabolite: J Agric Food Chem 36: 370–377.

    Google Scholar 

  • Schellenberg K, Leuenberger C, Schwarxenbach RP (1984) Sorption of chlorinated phe- nols by natural sediments and aquifer materials. Environ Sci Technol 18: 652–657.

    Article  CAS  Google Scholar 

  • Scheunert I, Qiao Z, Korte F (1986) Comparative studies of the fate of atrazine-14C and pentachlorophenol-14C in various laboratory and outdoor soil-plant systems. J Environ Sci Health B 21: 457–485.

    Article  Google Scholar 

  • Schönborn W, Dumpert K (1990) Effects of pentachlorophenol and 2,4,5trichlorophenoxyacetic acid on the microflora of the soil in a beech wood. Biol Fertil Soils 9: 292–300.

    Article  Google Scholar 

  • Seiler JP (1991) Pentachlorophenol. Mutat Res 257: 27–47.

    PubMed  CAS  Google Scholar 

  • Shiu WY, Ma KC, Varhanickova D, Mackay D (1994) Chlorophenols and alkylphenols: a review and correlation of environmental relevant properties and fate in an evaluative environment. Chemosphere 29: 1155–1224.

    Article  CAS  Google Scholar 

  • Short KA, Doyle JD, King RJ, Seidler RD, Stotzky G, Olsen RH (1991) Effects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganisms—mediated ecological processes in soil. Appl Environ Microbiol 57: 412–418.

    PubMed  CAS  Google Scholar 

  • Smejtek P (1987) The physicochemical basis of the membrane toxicity of pentachlorophenol: an overview. J Membr Sci 33: 249–268.

    Article  CAS  Google Scholar 

  • Tam TY, Trevors JT (1981) Effects of pentachlorophenol on asymbiotic nitrogen fixation in soil. Water Air Soil Pollut 16: 409–414.

    Article  CAS  Google Scholar 

  • Trevors JT (1982a) Effect of temperature on the degradation of pentachlorophenol by Pseudomonas species. Chemosphere 11: 471–475.

    Article  CAS  Google Scholar 

  • Trevors JT (1982b) Differences in the sensitivity of short-term bioassays. Bull Environ Contam Toxicol 28: 655–659.

    Article  PubMed  CAS  Google Scholar 

  • Valo R, Kitunen V, Salkinoja-Salonen M, Räisänen S (1984) Chlorinated phenols as contaminants of soil and water in the vicinity of two Finnish sawmills. Chemosphere 13: 835–844.

    Article  CAS  Google Scholar 

  • van Beelen P, Fleuren-Kemilä AK, Huys MPA, van Monfort ACP, van Vlaardingen PLA (1991a) The toxic effects of pollutants on the mineralization of acetate in subsoil microcosms. Environ Toxicol Chem 10: 775–789.

    Article  Google Scholar 

  • van Beelen P, Fleuren-Kemilä AK, van Monfort ACP (1991b) The effect of pentachlorophenol and other pollutants on the mineralization of acetate in several soils. RIVM Rep 719102010, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands.

    Google Scholar 

  • van Gestel CAM, Ma W (1988) Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability. Ecotoxicol Environ Saf 15: 289–297.

    Article  PubMed  Google Scholar 

  • van Gestel CAM, van Dis WA (1988) The influence of soil characteristics on the toxicity of four chemicals to the earthworm Eisen is eisenia andrei (Oligochaeta). Biol Fert Soils 6: 262–265.

    Article  Google Scholar 

  • van Gestel CAM, van Dis WA, van Breemen EM, Sparenburg PM (1989) Development of a standardized reproduction toxicity test with the earthworm species Eisenia fetida andrei using copper, pentachlorophenol, and 2,4,-dichloroaniline. Ecotoxicol Environ Saf 18: 305–312.

    Article  PubMed  Google Scholar 

  • van Gestel CAM, Ma W (1990) An approach to quantitative structure-activity rela- tionships (QSARs) in earthworm toxicity studies. Chemosphere 21: 1023–1033.

    Article  Google Scholar 

  • van Gestel CAM, van Dis WA, Dirven-van Bremen EM, Sparenburg PM, Baerselman R (1991) Influence of cadmium, copper and pentachlorophenol on growth and sexual development of Eisenia andrei (Oligochaeta: Annelida). Biol Fertil Soils 12: 117–121.

    Article  Google Scholar 

  • Van de Meent D, Aldenberg T, Canton JH, van Gestel CAM, Slooff W (1990) Desire for levels. Background study for the policy document “Setting Environmental Quality Standards for Water and Soil.” RIVM Rep 670101002, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands.

    Google Scholar 

  • Vershueren K (1983) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Virtanen MT, Hattula ML (1982) The fate of 2,4,6,-trichlorophenol in an aquatic continous-flow system. Chemosphere 11: 641–649.

    Article  CAS  Google Scholar 

  • Visser WJF (1993) Contaminated Land Policies in some Industrialized Countries. Report TCB R02, Technical Soil Protection Committee, The Hague, The Netherlands.

    Google Scholar 

  • Vonk JW, Adema DMM, Barug D (1986) Comparison of the effects of several chemicals on microorganisms, higher plants and earthworms. In: Assink JW, van den Brink JW (eds) Contaminated Soil 1986. Nijhoff, Dordrecht pp 191–202.

    Google Scholar 

  • VROM (1994) Environmental quality objectives in the Netherlands. A review of environmental quality objectives and their policy framework in the Netherlands. Risk Assessment and Environmental Quality Division, Directorate for Chemicals, External Safety and Radiation Protection, Ministry of Housing, Spatial Planning and the Environment, The Hague, The Netherlands.

    Google Scholar 

  • Walker N (1954) Preliminary observations on the decomposition of chlorophenols in soil. Plant Soil 5: 194–204.

    Article  CAS  Google Scholar 

  • Wedding RT, Hansch C, Fukuto TR (1967) Inhibition of malate dehydrogenase by phenols and the influence of ring substituents on their inhibitory effectiveness. Arch Biochem Biophys 121: 9–21.

    Article  PubMed  CAS  Google Scholar 

  • Weigmann G, Papenhausen U, Kratz W, Gruttke H (1985) Die wirkung chemisscher belastnungen auf tier-and pflanzengesellschaften städtischer brachflächen. Specielle Berichte Berlin Kern Forschung Anlage Jülich 296: 121–129.

    Google Scholar 

  • Weinbach EC, Garbus J (1965) The interaction of uncoupling phenols with mitochondria and with mitochondrial protein. J Biol Chem 240: 1811–1819.

    PubMed  CAS  Google Scholar 

  • Weiss UM, Moza P, Scheunert I, Hague A, Korte F (1982) Fate of pentachlorophenol-14C in rice plants under controlled conditions. J Agric Food Chem 30: 1186–1190.

    Article  CAS  Google Scholar 

  • Wild SR, Harrad SJ, Jones KC (1992) Pentachlorophenol in the UK environment. I: A budget and source inventory. Chemosphere 24: 833–845.

    Article  CAS  Google Scholar 

  • Wild SR, Harrad SJ, Jones KC (1993) Chlorophenols in digested U.K. sewage sludges. Water Res 27: 1527–1534.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1987) Pentachlorophenol. Environmental Health Criteria, vol 71. World Health Organization, Geneva, pp 1–236.

    Google Scholar 

  • WHO (1989) Chlorophenols other than pentachlorophenol. Environmental Health Criteria, vol 93. World Health Organization, Geneva, pp 1–209.

    Google Scholar 

  • Yasuda Y, Tochikubo K, Hachisuka Y, Tomida H, Ikeda K (1982) Quantitative structure-inhibitory activity relationships of phenols and fatty acids for Bacillus subtilis spore germination. J Med Chem 25: 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Zelles L, Scheuneret I, Korte F (1985). Side effects of some pesticides on non-target soil microorganisms. J Environ Sci Health B 205: 457–488.

    Article  Google Scholar 

  • Zelles L, El-Kabbany S, Scheunert I, Korte F (1989) Effects of pentachlorophenol 14C and HgC12 on the microflora of various soils in comparison to biodegradation and volatilization. Chemosphere 19: 1721–1727.

    Article  CAS  Google Scholar 

  • Zelles L, El-Kabbany S, Scheunert I (1991) The interrelationship between biological effects and the persistence of pentachlorophenol and HgC12 in various soils. Toxicol Environ Chem 30: 177–181.

    Article  CAS  Google Scholar 

  • Zietz E, Dumpert K, Römbke J (1987) Effects of pentachlorophenol and 2,4,5trichlorophenol on a soil ecosystem. I. Application and residue analysis. Sci Total Environ 61: 153–165.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Jensen, J. (1996). Chlorophenols in the Terrestrial Environment. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8478-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8478-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8480-9

  • Online ISBN: 978-1-4613-8478-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics