Skip to main content

Algebraic Energy Spectra in Stochastic Problems for the Incompressible Navier-Stokes Equation; Relation to Other Nonlinear Problems

  • Conference paper
Nonlinear Stochastic PDEs

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 77))

Abstract

We use the Wiener-Hermite expansion based on the integral of the white noise process (Feynman path integral) to represent nonlinear, but near to Gaussian, processes. The energy transfer function is examined and, for the equilibrium 5/3-law energy spectrum, it is seen that the dependence on k 0, the energy range wavenumber, drops out so that changes in the energy spectrum must be algebraic. This surprising result follows from the fact that the pressure term emphasizes the enormous region of phase space available for transfer, of order the large wavenumber k, compared with the small region in the vicinity of the energy spectrum peak. The discussion thus gives, to the author’s knowledge, the first explanation of the spectrum which goes beyond simple dimensional analysis (and assumptions concerning appropriate, influencing parameters). Applications to more general nonlinear stochastic problems are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.D. Rogge and W.C. Meecham, J. Fluid Mech. 85; 325(1978).

    Article  MathSciNet  Google Scholar 

  2. C.P. Lee, W.C. Meecham and H.D. Rogge, Phys. Fluids, 25; 1322(1982).

    Article  MATH  Google Scholar 

  3. T. Imamura, W.C. Meecham and A. Siegel, J.Math. Phys. 6; 695(1965).

    Article  MathSciNet  Google Scholar 

  4. S.E. Bodner, Phys. Fluids 12; 33(1969).

    Article  MATH  Google Scholar 

  5. M. Doi and T. Imamura, Prog. Theor. Phys. 41; 358(1969).

    Article  MATH  MathSciNet  Google Scholar 

  6. J.B. Wissler, presentation to meeting of the Am. Geophysical Union May, 1993; Also to meeting of the Div. of Fl. Dynamics, Am. Phys. Soc., Nov. 1993.

    Google Scholar 

  7. N. Wiener, “Nonlinear Problems in Random Theory,” John Wiley, New York (1958).

    MATH  Google Scholar 

  8. M. Waldrop “Complexity,” Simon and Schuster, New York (1992).

    Google Scholar 

  9. H.D. Rogge, Ph.D. Thesis, University of California at Los Angeles (1977).

    Google Scholar 

  10. T.C. Chung, Ph.D. Thesis, University of California at Los Angeles (1991).

    Google Scholar 

  11. T. von Karman, Progress in the Statistical Theory of Turbulence, Proc. Nat. Acad. Sci., U.S. 34;530(1948).

    Article  MATH  MathSciNet  Google Scholar 

  12. G.K. Batchelor, “Theory of Homogeneous Turbulence,” Cambridge University Press, New York (1963).

    Google Scholar 

  13. We are indebted to Professor W.I. Newman for pointing out this identity.

    Google Scholar 

  14. W.C. Clever and W.C. Meecham, Phys. Fluids, 15 (2);944(1972).

    Google Scholar 

  15. T. Gotch and R.H. Kraichnan, Phys. Fluids, A5 (2);445(1993).

    Google Scholar 

  16. T.S. Lundgren, Phys. Fluids, 25; 2193(1982).

    Article  MATH  Google Scholar 

  17. D.T. Jeng, Phys. Fluids, 12;2006(1969).

    Article  MATH  Google Scholar 

  18. C.P. Lee, Ph.D. Thesis, University of California at Los Angeles (1981).

    Google Scholar 

  19. R.M. Kerr, Phys. Fluids, A5; 1725(1993).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Meecham, W.C. (1996). Algebraic Energy Spectra in Stochastic Problems for the Incompressible Navier-Stokes Equation; Relation to Other Nonlinear Problems. In: Funaki, T., Woyczynski, W.A. (eds) Nonlinear Stochastic PDEs. The IMA Volumes in Mathematics and its Applications, vol 77. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8468-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8468-7_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8470-0

  • Online ISBN: 978-1-4613-8468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics