Skip to main content

Evaluation of Spectral Behavior for Large Ensembles of Exact Solutions to Burgers’ Equation for Thomas Initial Conditions

  • Conference paper
Nonlinear Stochastic PDEs

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 77))

  • 346 Accesses

Abstract

Spectral and cumulative spectral transfer, as well as energy and dissipation spectra, have been computed by FFT from exact solutions to Burgers’ equation for Thomas [1] random initial conditions at initial turbulence Reynolds’ numbers of Re 0 = 400 and 1000. Accurate, efficient numerical evaluation of the exact solution on a fine spatial mesh enables spectral computations to be carried out at high wave numbers for large ensembles, thereby confirming the exponential viscous cutoff. The low wave-number white narrow band of the energy spectrum gives way to the well-known k −2-subrange, independently of Rep in the high Rep range. The k −2-subrange, in turn, gives way with increasing wave-number k to an exp(−αk) high wave-number viscous cutoff at a wave number depending on Re 0. Spectral transfer and cumulative spectral transfer functions look very much like their counterparts for three-dimensional isotropic turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Thomas, Phys. Fluids, 11, 1245 (1968).

    Article  MATH  Google Scholar 

  2. W.C. Meecham and A. Siegel, Phys. Fluids, 7, 1178 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  3. R.H. Kraichnan, Phys. Fluids, 11, 265 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  4. W.P.M. Malfliet, Physica, 45, 257 (1969).

    Article  Google Scholar 

  5. T. Tatsumi, Phys. Fluids Suppl. II, 12, II - 258 (1969).

    Google Scholar 

  6. H. Tanaka, J. Meteor. Soc. Jpn., 47, 373 (1969).

    Google Scholar 

  7. J.J. Walton, Phys. Fluids, 13, 1634 (1970).

    Article  MATH  Google Scholar 

  8. H. Tanaka, J. Phys. Soc. Jpn., 34, 1390 (1973).

    Article  Google Scholar 

  9. W.C. Meecham, P Iyer, and W.C. Clever, Phys. Fluids, 18, 1610 (1975).

    Article  Google Scholar 

  10. T. Tatsumi and S. Kida, J. Phys. Soc. Jpn., 49, 2014 (1980).

    Article  Google Scholar 

  11. J. Mizushima and T. Tatsumi, J. Phys. Soc. Jpn., 50, 1765 (1981).

    Article  Google Scholar 

  12. G.K. Batchelor, The Theory of Homogeneous Turbulence,Cambridge University Press, Cambridge (1953) (see esp. p 195 note added in 1956 and subsequent printings).

    Google Scholar 

  13. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol. 2 (ed. J.L. Lumley) MIT Press, Cambridge, MA (1975).

    Google Scholar 

  14. D.T. Jeng, A Study of Burgers’ Model Equation of Turbulence, Magistral thesis, Univ. of Minnesota (1965).

    Google Scholar 

  15. D.T. Jeng, R. Foerster, S. Haaland, and W.C. Meecham, Phys. Fluids, 9, 2114 (1966).

    Article  Google Scholar 

  16. Y.-C. Shih and XB Reed, Jr., Symp. of Fluid Dynamics (eds. A.L. Addy, W.L. Chow, N.S. Vlachos and R.A. White) Dept. Mech. and Ind. Engg, U. Ill., pp. 301–308 (1984).

    Google Scholar 

  17. Y.-C. Shih and XB Reed, Jr., Phys. Fluids, 28, 2088 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  18. Y.-C. Shih and XB Reed, Jr., Physico-Chemical Hydrodynamics, 6, 853 (1985).

    Google Scholar 

  19. Y.-C. Shih and XB Reed, Jr., Sixth International Conference on Physico-Chemical Hydrodynamics, Oxford Univ. (1987).

    Google Scholar 

  20. XB Reed, Jr. and Y.-C. Shih, unpublished (1988).

    Google Scholar 

  21. S. Keleti and XB Reed, Jr., Developments in Mechanics, 14a, 63 (1987).

    Google Scholar 

  22. S. Keleti and XB Reed, Jr., 5th Symposium on Turbulent Shear Flows, Cornell Univ. (1985) (abstract available from authors).

    Google Scholar 

  23. M. Martell, Checkpoint, 2, 5 ( Oct. 1970, Floating Point Systems, Inc.).

    Google Scholar 

  24. S.A. Orszag, in Fluid Dynamics/Dynamique des Fluids 1973 (eds. R. Balian and J.-L. Peube) Gordon and Breach Science Publishers, London (1977).

    Google Scholar 

  25. J.M. Burgers, Advances in Applied Mechanics, vol. I (eds. R. von Mises and T. von Karman) Academic, New York, p. 171 (1948).

    Chapter  Google Scholar 

  26. W.H. Reid, Appl. Sci. Res. A 6, 85 (1957).

    Google Scholar 

  27. A.M. Oboukhov, J. Fluid Mech., 13, 77 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  28. W. Heisenberg, Z. Physik 124, 628 (1948) (German)

    Google Scholar 

  29. L.S.G. Kovasznay, J. Aero. Sci. 15, 745 (1948).

    MathSciNet  Google Scholar 

  30. J.O. Hinze, Turbulence, 2nd ed. McGraw-Hill, New York (1975).

    Google Scholar 

  31. M.S. Uberoi, Phys. Fluids, 6, 1048 (1963).

    Article  MATH  Google Scholar 

  32. C.W. Van Atta and W.Y. Chen, J. Fluid Mech., 38, 743 (1969).

    Article  Google Scholar 

  33. F.H. Champagne, J. Fluid Mech., 86, 67 (1978).

    Article  Google Scholar 

  34. J. Mizushima and Y. Saito, Phys. Fluids, 28, 1294 (1985).

    Article  MATH  Google Scholar 

  35. H. Tòkunaga, J. Phys. Soc. Jpn., 52, 827 (1983).

    Article  Google Scholar 

  36. M.D. Love, J. Fluid Mech., 100, 87 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  37. H. Tokunaga, J. Phys. Soc. Jpn., 41, 328 (1976).

    Google Scholar 

  38. R.D. Fay, J. Acoust. Soc. Amer., 3, 222 (1931).

    Google Scholar 

  39. J.M. Burgers, Proc. Acad. Sci. Amst.,,53, 247,393, 718, 732 (1950).

    MathSciNet  Google Scholar 

  40. E.Y. Rodin, J. Math. Anal. and Appl. 30, 401 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  41. E.R. Benton, Phys. Fluids, 10, 2113 (1967).

    Article  MATH  Google Scholar 

  42. P.G. Saffman, in Topics in Nonlinear Physics (ed. N.J. Zabusky) Springer-Verlag, New York, pp. 485–614 (1968).

    Google Scholar 

  43. J. Mizushima, Phys. Fluids, 21, 512 (1978).

    Article  Google Scholar 

  44. H. Tennekes and J.L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, MA (1972).

    Google Scholar 

  45. S. Kida, Phys. Fluids, 24, 604 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  46. E. Parzen, Stochastic Processes, Holden-Day, San Francisco (1962).

    MATH  Google Scholar 

  47. S. Kida, J. Fluid Mech., 93, 337 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  48. S.C. Crow and G.H. Canavan, J. Fluid Mech., 41, 387 (1970).

    Article  MATH  Google Scholar 

  49. J. Mizushima and A. Segami, Phys. Fluids, 23, 2559 (1980).

    Article  Google Scholar 

  50. T. Tatsumi, Advances in Applied Mechanics, vol. 20 (ed. Chia-Shun Yih) Academic Press, New York, pp. 39–133 (1980).

    Chapter  Google Scholar 

  51. H.L. Dryden, Quart. J. Appl. Math., 1, 7 (1943).

    MATH  MathSciNet  Google Scholar 

  52. G.K. Batchelor and I. Proudman, Philos. Trans. A 248, 369 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  53. R.H. Kraichnan, J. Fluid Mech., 5, 497 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  54. S.A. Orszag, Theory of Turbulence, Princeton University Ph.D., University Microfilms, Ann Arbor, MI (1966).

    Google Scholar 

  55. U. Frisch, M. Lesieur, and D. Schertzer, J. Fluid Mech., 97, 181 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  56. S.A. Orszag, Handbook of Turbulence, vol. 1: Fundamentals and Applications (eds. W Frost and T.H. Moulden) Plenum Press, New York, p. 281 (1977).

    Google Scholar 

  57. A.C. Hearn, Ed., REDUCE User’s Manual (version 3.2), Rand Corp., Santa Monica, CA (1985).

    Google Scholar 

  58. VAX UNIX MACSYMA TM Reference Manual,Symbolics Inc., Cambridge, MA (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Keleti, S., Reed, X.B. (1996). Evaluation of Spectral Behavior for Large Ensembles of Exact Solutions to Burgers’ Equation for Thomas Initial Conditions. In: Funaki, T., Woyczynski, W.A. (eds) Nonlinear Stochastic PDEs. The IMA Volumes in Mathematics and its Applications, vol 77. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8468-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8468-7_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8470-0

  • Online ISBN: 978-1-4613-8468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics