Robust Control Theory pp 175-207 | Cite as

# Weighted Approximation Techniques and Their Applications in Controller Reduction

Conference paper

## Abstract

This paper summarizes some model/controller reduction results obtained recently by the author. The results presented in this paper include (a) a new relative error model reduction algorithm together with some explicit error bounds; (b) a complete solution to the frequency weighted Hankel norm approximation with anti-stable weighting; and (c) the controller order reduction with stability and performance constraints.

## Key words

Frequency Weighting*L*

_{∞}Norm Approximation Hankel Norm Approximation Convex Programming Controller Order Reduction

## Preview

Unable to display preview. Download preview PDF.

## References

- [1]U.M. Al-Saggaf and G.F. Franklin,
*Model reduction via balanced realizations: an extension and frequency weighting techniques*, IEEE Trans. Automat. Contr.,**AC-33**(7) July (1988) pp. 687–692.MathSciNetCrossRefGoogle Scholar - [2]B.D.O. Anderson,
*Weighted Hankel-norm approximation: calculation of bounds*, System & Control Letters,**7**(1986), pp. 247–255.zbMATHCrossRefGoogle Scholar - [3]B.D.O. Anderson and Y. Liu,
*Controller reduction: concepts and approaches*, IEEE Trans. Automat. Contr.**AC-34**(8) (1989), pp. 802–812.MathSciNetCrossRefGoogle Scholar - [4]G. Balas, J.C. Doyle, K. Glover, A. Packard, and R. Smith,
*μ-Analysis and Synthesis Toolbox*, MUSYN Inc. and The Math Works, Inc. April 1991.Google Scholar - [5]D.S. Bernstein and W.M. Haddard,
*LQG control with an R ∞ performance bound: a Riccati equation approach*, IEEE Trans Automat. Contr. -**AC-34**(1989), pp. 293–305.CrossRefGoogle Scholar - [6]S. Boyd and C.H. Barratt,
*Linear Controller Design: Limits of Performance*, Prentice Hall, 1991.Google Scholar - [7]M.A. Dahleh and J.B. Pearson, 21
*optimal feedback controllers for MIMO discrete time systems*, IEEE Trans. Auto. Contr.**AC-32**(4) (1987), pp. 314–322.CrossRefGoogle Scholar - [8]U.B. Desai and D. Pal,
*A transformation approach to stochastic model reduction*, IEEE Trans. Automat. Contr.**29**(12) December (1984), pp. 1097–1100.MathSciNetzbMATHCrossRefGoogle Scholar - [9]J.C. Doyle,
*Analysis of feedback systems with structured uncertainties*, IEE Proceedings**129**Part D (6) Nov (1982), pp. 242–250.MathSciNetGoogle Scholar - [10]J.C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis,
*State-space. solu-tions to standard N2 and R ∞, control problems*, IEEE Trans. Auto. Control**AC-34**(8) (1989), pp. 831–847.MathSciNetCrossRefGoogle Scholar - [11]J.C. Doyle, A. Packard and K. Zhou,
*Review of LFTs*,*LMIs and N*., IEEE CDC, England, 1991.Google Scholar - [12]D. Enns, Model Reduction for Control System Design, (Ph.D. dissertation), Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 1984.Google Scholar
- [13]D. Enns,
*Model reduction with balanced realizations: An error bound and a frequency weighted generalization*, Proc. 23rd Conf. Dec. Contr., Las Vegas, NV 1984.Google Scholar - [14]K. Glover,
*All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds*, Int. J. Control**39**(6) (1984), pp. 1115–1195.MathSciNetzbMATHCrossRefGoogle Scholar - [15]K. Glover, A
*tutorial on Hankel-norm Approximation*, Data to Model, J.C. Willems, Ed. New York: Springer-Verlag, 1989.Google Scholar - [16]K. Glover,
*Multiplicative approximation of linear multivari able systems with L**∞**error bounds*, Proc. Amer. Contr. Conf., Seattle, WA, 1986, pp. 1705–1709.Google Scholar - [17]K. Glover and D.J.N. Limebeer,
*Robust multivariable control system design using optimal reduced order plant methods*, Proc. ACC, San Francisco, CA, 1983.Google Scholar - [18]K. Glover, D.J.N. Limebeer and Y.S. Hung,
*A structured approximation problem with applications to frequency weighted model reduction*, IEEE Trans. Automat. Contr.**AC-37**(4) April (1992), pp. 447–465.MathSciNetCrossRefGoogle Scholar - [19]M. Green, A
*relative error bound for balanced stochastic truncation*, IEEE Trans. Automat. Contr.**AC-33**(10) October (1988), pp. 961–965.CrossRefGoogle Scholar - [20]M. Green,
*Balanced stochastic realizations*, Journal of Linear Algebra and its Applications,**98**(1988), pp. 211–247.zbMATHCrossRefGoogle Scholar - [21]M. Green and B.D.O. Anderson,
*Model reduction by phase matching*, Mathematics of Control, Signals, and Systems**2**(1989), pp. 221–263.MathSciNetzbMATHCrossRefGoogle Scholar - [22]Y.S. Hung and K. Glover,
*Optimal Hankel-norm approximation of stable systems with first order stable weighting functions*, Syst. Contr. Lett.**7**(1986), pp. 165–172.MathSciNetzbMATHCrossRefGoogle Scholar - [23]Y.S. Hung and M.A. Muzlifah,
*Hankel norm model reduction with fixed modes*, IEEE Trans. Automat. Contr.**AC-35**(3) March (1990), pp. 373–377.MathSciNetCrossRefGoogle Scholar - [24]D.C. Hyland and D.S. Bernstein,
*The optimal projection equations for fixed-order dynamic compensation*, IEEE Trans. Auto. Contr.**AC-29**(11) (1984), pp. 1034–1037.MathSciNetCrossRefGoogle Scholar - [25]E.A. Jonckheere and J.W. Helton,
*Power spectrum reduction by optimal Hankel norm approximation of the phase of the outer spectral factor*, IEEE Trans. Automat. Contr.**AC-30**1985. pp. 1034–1037.MathSciNetGoogle Scholar - [26]H. Kimura,
*Optimal L2-approximation with fixed poles*, System & Control Letters,**2**(5) February (1983), pp. 257–261.zbMATHCrossRefGoogle Scholar - [27]G.A. Latham and B.D.O. Anderson,
*Frequency weighted optimal Hankel-norm approximation of stable transfer function*, Syst. Contr. Lett.**5**(1986), pp. 229–236.MathSciNetCrossRefGoogle Scholar - [28]K.E. Lenz, P.P. Khargonekar and John C. Doyle, Controller order reduction with guaranteed stability and performance, pp. 1697–1698.Google Scholar
- [29]Y. Liu, B.D.O. Anderson and U. Ly,
*Coprime factorization controller reduction with Bezout identity induced frequency weighting*, Automatica**26**(2) (1990), pp. 233–249.MathSciNetzbMATHCrossRefGoogle Scholar - [30]Y. Liu and B.D.O. Anderson,
*Frequency weighted controller reduction methods and loop transfer recovery*, Automatica**26**(3) (1990), pp. 487–497.MathSciNetzbMATHCrossRefGoogle Scholar - [31]Y. Liu and B.D.O. Anderson,
*Controller reduction via stable factorization and balancing*, Int. J. Control 44 (1986), pp. 507–531.zbMATHCrossRefGoogle Scholar - [32]B.C. Moore,
*Principal component analysis in linear systems*, IEEE Trans. Automat. Contr. AC-26 Feb (1981), pp. 17–32.CrossRefGoogle Scholar - [33]J.B. Moore, A.J. Telford and U. Ly,
*Controller reduction methods maintaining performance and robustness*, Proc. 27th Conf. Dec. Contr., Austin, TX, December 1988, pp. 1159–1164.Google Scholar - [34]D. Mustafa and K. Glover,
*Controller Reduction by L ∞-Balanced Truncation*, IEEE Trans. Automat. Contr.**AC-36**(6) June (1991), pp. 669–682.MathSciNetGoogle Scholar - [35]L. Pernebo and L.M. Silverman, Model Reduction via Balanced State Space Representation,
*IEEE Trans. Automat. Contr*.**AC-27**(2) Apr (1982), pp. 382–387.MathSciNetCrossRefGoogle Scholar - [36]D.E. Rivera and M. Morari,
*Plant and controller reduction problems for closed loop performance*, Proc. 27th Conf. Dec. Contr., Austin, TX, December 1988, pp. 1143–1148.Google Scholar - [37]M.G. Safonov and R.Y. Chiang,
*Model reduction for robust control: A Schur relative-error method*, International J. Adaptive Control and Signal Processing**2**(1988), pp. 259–272.zbMATHCrossRefGoogle Scholar - [38]W. Wang and M.G. Safonov,
*A tighter relative-error bound for balanced stochastic truncation*, Syst. Contr. lett.**14**(1990), pp. 307–317.MathSciNetzbMATHCrossRefGoogle Scholar - [39]W. Wang and M.G. Safonov,
*Multiplicative-error bound for balanced stochastic truncation model reduction*, IEEE Trans. Automat. Contr.**AC-37**(8) August (1992), pp. 1265–1267.MathSciNetCrossRefGoogle Scholar - [40]A. Yousuff and R.E. Skelton,
*A note on balanced controller reduction*, IEEE Trans. Automat. Contr.**AC-29**(1984), pp. 254–256.CrossRefGoogle Scholar - [41]A. Yousuff and R.E. Skelton,
*Controller reduction by component cost analysis*, IEEE Trans. Automat. Contr.**AC-29**(6) (1984), pp. 520–530.CrossRefGoogle Scholar - [42]K. Zhou,
*Frequency weighted model reduction with error bounds*, (submitted to) 1993 ACC, September 1992.Google Scholar - [43]K. Zhou,
*Frequency weighted norm and optimal Hankel norm model reduction*, (to be submitted) 1992.Google Scholar

## Copyright information

© Springer-Verlag New York, Inc. 1995