Skip to main content

Robust Stabilization for Parametric Uncertainty with Application to Magnetic Levitation

  • Conference paper
Robust Control Theory

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 66))

  • 379 Accesses

Abstract

This paper considers the quadratic stabilization for a class of uncertain linear systems. The system under consideration contains norm-bounded time-varying uncertainties. The quadratic stability problem for the system is reduced to finding a common positive definite solution of 2m Lyapunov equations, where m is the number of uncertain scalar parameters. A sufficient condition for the quadratic stabilizability of uncertain systems is derived in terms of a Riccati equation containing at most 2(m + 1) free parameters. The results are applied to the stabilizing control of a magnetic levitation system. The effectiveness of our method is illustrated both in simulations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. I. Badr, M. F. Hassan, J. Bernussou, and A. Y. Bilal, Stability and performance robustness for multivariable linear systems, Automatica 25 (1989), no. 6, pp. 935–942.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. R. Barmish, Necessary and sufficient condition for quadratic stabilizability of an uncertain linear system, J. Optimiz. Theory Appl., 46 (1985), no. 4, pp. 399–408.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bernussou, P. L. D. Peres, and J. C. Geromel, A linear programming oriented procedure for quadratic stabilization of uncertain systems, Systems and Control Letters, 13 (1989), pp. 65–72.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Boyd and Q. Yang, Structured and simultaneous Lyapunov functions for system stability problems, hit. J. Control, 49 (1989), no. 6, pp. 2215–2240.

    MathSciNet  MATH  Google Scholar 

  5. M. Fujita, T. Namerikawa, F. Matsumura, and K. Uchida, μ-synthesis of an electromagnetic suspension system — part I:modeling and part II: design, Proc. 21th SICE Symposium on Control Theory, 1992, pp. 149–160.

    Google Scholar 

  6. H. P. Horisberger and P. R. Belanger, Regulators for linear time invariant plants with uncertain parameters, IEEE Trans. Automat. Control, AC-21 (1976), no. 5, pp. 705–708.

    Article  MathSciNet  Google Scholar 

  7. P. P. Khargonekar, I. R. Petersen, and K. Zhou, Robust stabilization of uncertain linear systems: quadratic stabilizability and H ∞ control theory, IEEE Trans. Automat. Control, AC-35 (1990), no. 3, pp. 356–361.

    Article  MathSciNet  Google Scholar 

  8. A. Packard, K. Zhou, P. Pandey, and G. Beckar, A collection of robust control problems leading to LMI’s, Proc. 30th CDC, (1991), pp. 1245–1250.

    Google Scholar 

  9. I. R. Petersen, A stabilization algorithm for a class of uncertain linear systems, Systems and Control Letters, 8 (1987), pp. 351–357.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. R. Petersen, Stabilization of an uncertain linear system in which uncertain parameters enter into the input matrix, SIAM J. Contr. and Optimiz., 26 (1988), no. 6, pp. 1257–1264.

    Article  MATH  Google Scholar 

  11. I. R. Petersen and C. V. Hollot, A Riccati equation approach to the stabilization of uncertain linear systems, Automatica, 22 (1986), no. 4, pp. 397–411.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. A. Rotea and P. P. Khargonekar, Stabilization of uncertain systems with norm bounded uncertainty — a control Lyapunov function approach, SIAM J. Contr. and Optimiz., 27 (1989), no. 6, pp. 1462–1476.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. E. Schmitendorf, Designing stabilizing controllers for uncertain systems using the Riccati equation approach, IEEE Trans. Automat. Control, AC-33 (1988), no. 4, pp. 376–379.

    Article  MathSciNet  Google Scholar 

  14. K. Shibukawa, T. Tsubakiji, and H. Kimura, Robust stabilization of a magnetic levitation system, Proc. 30th CDC, 1991, pp. 2368–2371.

    Google Scholar 

  15. K. Zhou and P. P. Khargonekar, On the stabilization of uncertain linear systems via bounded invariant Lyapunov functions, SIAM J. Contr. and Optimiz., 26 (1988), no. 6, pp. 1265–1273.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Zhou and P. P. Khargonekar, Robust stabilization of linear system with norm-bounded time-varying uncertainty, Systems and Control Letters, 10 (1988), pp. 1720.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Yamamoto, S., Kimura, H. (1995). Robust Stabilization for Parametric Uncertainty with Application to Magnetic Levitation. In: Francis, B.A., Khargonekar, P.P. (eds) Robust Control Theory. The IMA Volumes in Mathematics and its Applications, vol 66. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8451-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8451-9_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8453-3

  • Online ISBN: 978-1-4613-8451-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics