Advertisement

Robust Stabilization for Parametric Uncertainty with Application to Magnetic Levitation

  • Shigeru Yamamoto
  • Hidenori Kimura
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 66)

Abstract

This paper considers the quadratic stabilization for a class of uncertain linear systems. The system under consideration contains norm-bounded time-varying uncertainties. The quadratic stability problem for the system is reduced to finding a common positive definite solution of 2 m Lyapunov equations, where m is the number of uncertain scalar parameters. A sufficient condition for the quadratic stabilizability of uncertain systems is derived in terms of a Riccati equation containing at most 2(m + 1) free parameters. The results are applied to the stabilizing control of a magnetic levitation system. The effectiveness of our method is illustrated both in simulations and experiments.

Key words

quadratic stability quadratic stabilization Riccati equation magnetic levitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. I. Badr, M. F. Hassan, J. Bernussou, and A. Y. Bilal, Stability and performance robustness for multivariable linear systems, Automatica 25 (1989), no. 6, pp. 935–942.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    B. R. Barmish, Necessary and sufficient condition for quadratic stabilizability of an uncertain linear system, J. Optimiz. Theory Appl., 46 (1985), no. 4, pp. 399–408.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    J. Bernussou, P. L. D. Peres, and J. C. Geromel, A linear programming oriented procedure for quadratic stabilization of uncertain systems, Systems and Control Letters, 13 (1989), pp. 65–72.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    S. Boyd and Q. Yang, Structured and simultaneous Lyapunov functions for system stability problems, hit. J. Control, 49 (1989), no. 6, pp. 2215–2240.MathSciNetzbMATHGoogle Scholar
  5. [5]
    M. Fujita, T. Namerikawa, F. Matsumura, and K. Uchida, μ-synthesis of an electromagnetic suspension system — part I:modeling and part II: design, Proc. 21th SICE Symposium on Control Theory, 1992, pp. 149–160.Google Scholar
  6. [6]
    H. P. Horisberger and P. R. Belanger, Regulators for linear time invariant plants with uncertain parameters, IEEE Trans. Automat. Control, AC-21 (1976), no. 5, pp. 705–708.MathSciNetCrossRefGoogle Scholar
  7. [7]
    P. P. Khargonekar, I. R. Petersen, and K. Zhou, Robust stabilization of uncertain linear systems: quadratic stabilizability and H control theory, IEEE Trans. Automat. Control, AC-35 (1990), no. 3, pp. 356–361.MathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Packard, K. Zhou, P. Pandey, and G. Beckar, A collection of robust control problems leading to LMI’s, Proc. 30th CDC, (1991), pp. 1245–1250.Google Scholar
  9. [9]
    I. R. Petersen, A stabilization algorithm for a class of uncertain linear systems, Systems and Control Letters, 8 (1987), pp. 351–357.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    I. R. Petersen, Stabilization of an uncertain linear system in which uncertain parameters enter into the input matrix, SIAM J. Contr. and Optimiz., 26 (1988), no. 6, pp. 1257–1264.zbMATHCrossRefGoogle Scholar
  11. [11]
    I. R. Petersen and C. V. Hollot, A Riccati equation approach to the stabilization of uncertain linear systems, Automatica, 22 (1986), no. 4, pp. 397–411.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    M. A. Rotea and P. P. Khargonekar, Stabilization of uncertain systems with norm bounded uncertainty — a control Lyapunov function approach, SIAM J. Contr. and Optimiz., 27 (1989), no. 6, pp. 1462–1476.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    W. E. Schmitendorf, Designing stabilizing controllers for uncertain systems using the Riccati equation approach, IEEE Trans. Automat. Control, AC-33 (1988), no. 4, pp. 376–379.MathSciNetCrossRefGoogle Scholar
  14. [14]
    K. Shibukawa, T. Tsubakiji, and H. Kimura, Robust stabilization of a magnetic levitation system, Proc. 30th CDC, 1991, pp. 2368–2371.Google Scholar
  15. [15]
    K. Zhou and P. P. Khargonekar, On the stabilization of uncertain linear systems via bounded invariant Lyapunov functions, SIAM J. Contr. and Optimiz., 26 (1988), no. 6, pp. 1265–1273.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    K. Zhou and P. P. Khargonekar, Robust stabilization of linear system with norm-bounded time-varying uncertainty, Systems and Control Letters, 10 (1988), pp. 1720.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Shigeru Yamamoto
    • 1
  • Hidenori Kimura
    • 1
  1. 1.Department of Mechanical Engineering for Computer-Controlled MachineryOsaka UniversitySuita, Osaka, 565Japan

Personalised recommendations