Robust Stabilization for p Gap Perturbations

  • Li Qiu
  • Daniel E. Miller
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 66)


This paper studies robust stabilization of linear feedback systems. The special features of this study are: (1) the input and output signal spaces of systems are assumed to be any p spaces; (2) system perturbations are measured by the gap function.

Key words

gap graph robust control robust stability p spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. A. Dahleh, BIBO stability robustness in the presence of coprirne factor perturbation, IEEE Trans. Automat. Contr. 37 (1992), pp. 352–355.MathSciNetCrossRefGoogle Scholar
  2. [2]
    M. A. Dahleh and J. B. Pearson, 1 optimal feedback controller for MIlvIO discrete time systems, IEEE Trans. Automat. Contr. AC-32 (1987), pp. 314–322.Google Scholar
  3. [3]
    M. A. Dahleh and J. B. Pearson, Optimal rejection of persistent disturbances, robust stability and mixed sensitivity minimization, IEEE Trans. Automat. Contr. 33 (1988), pp. 722–731.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    W. N. Dale and M. C. Smith, Stabilizability and existence of system representations for discrete-time time-varing systems, Proc. IEEE Conf. Decision and Control (1990), pp. 2737–2742.Google Scholar
  5. [5]
    C. A. Desoer, R. W. Liu, J. Murray, and R. Saeks, Feedback system design: the fractional representation approach to analysis and synthesis, IEEE Trans. Automat. Contr. AC-25 (1980), pp. 399–412.MathSciNetCrossRefGoogle Scholar
  6. [6]
    A. K. El-Sakkary, The gap metric: robustness of stabilization of feedback systems, IEEE Trans. Automat. Contr. AC-30 (1985), pp. 240–247.MathSciNetCrossRefGoogle Scholar
  7. [7]
    A. K. El-Sakkary, Estimating robustness on the Riemann sphere, Int. J. Control 49 (1989), pp. 561–567.MathSciNetzbMATHGoogle Scholar
  8. [8]
    A. Feintuch, The gap metric for time-varying systems, Systems & Control Letters 16 (1991), pp. 277–279.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    C. Foias, T. T. Georgiou, and M. C. Smith, Geometric techniques for robust stabilization of linear time-varying systems, Proc. IEEE Conf. Decision and Control (1990), pp. 2868–2873.Google Scholar
  10. [10]
    F. Forgo, Nonconvex Programming, Akademiai Kiado, Budapest, 1988.zbMATHGoogle Scholar
  11. [11]
    T. T. Georgiou, On the computation of the gap metric, Systems & Control Letters 11 (1988), pp. 253–257.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    T. T. Georgiou and M. C. Smith, Optimal robustness in the gap metric, IEEE Trans. Automat. Contr. 35 (1990), pp. 673–685.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    T. T. Georgiou and M. C. Smith, Graphs, causality and stabilizability: linear, shift-invariant systems on E 2 [0, ∞), Proc. IEEE Conf. Decision and Control (1992), pp. 1024–1029.Google Scholar
  14. [14]
    T. T. Georgiou and M. C. Smith, Robust stabilization in the gap metric: controller design for distributed systems, IEEE Trans. Automat. Contr. 37 (1992), pp. 1133–1143.MathSciNetCrossRefGoogle Scholar
  15. [15]
    K. Glover and D. C. Mcfarlane, Robust stabilization of normalized coprime factor plant description with H -bounded uncertainty, IEEE Trans. Automat. Contr. AC-34 (1989), pp. 821–830.MathSciNetCrossRefGoogle Scholar
  16. [16]
    P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, Inc., New York, 1981.zbMATHGoogle Scholar
  17. [17]
    T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), pp. 261–322.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    T. Kato, Perturbation Theory for Linear Operator, Springer-Verlag, New York, 1966.Google Scholar
  19. [19]
    J. L. Kelley and T. P. Srinivasan, Measure and Integral, Volume 1, Springer-Verlag, New York, 1988.zbMATHCrossRefGoogle Scholar
  20. [20]
    M. G. Kreìn and M. A. Krasnosel’skiì, Fundamental theorems concerning the extension of Hermitian operators and some of their applications to the theory of orthogonal polynomials and the moment problem, (in Russian) Uspekhi Mat. Nauk 2 (1947), pp. 60–106.Google Scholar
  21. [21]
    M. G. Kreìn, M. A. Krasnosel’skiì, and D. P. Mil’man, Concerning the deficiency numbers of linear operators in Banach space and some geometric questions, (in Russian) Sbornik Trudov Inst. Mat. Akad. Nauk Ukr. SSR 11 1948.Google Scholar
  22. [22]
    H. Ozbay, On L 1 optimal control, IEEE Trans. Automat. Contr. 34 (1989), pp. 884–885.CrossRefGoogle Scholar
  23. [23]
    K. Poolla and P. Khargonekar, Stabilizability and stable-proper factorizations for linear time-varing systems, SIAM J. Control & Optimization 25 (1987), pp. 723–736.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    L. Qiu and E. J. Davison, Feedback stability under simultaneous gap metric uncertainties in plant and controller, Systems & Control Letters 18 (1992), pp. 9–22.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    L. Qiu and E. J. Davison, Pointwise gap metrics on transfer matrices, IEEE Trans. Automat. Contr. 37 (1992), pp. 741–758.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    H. L. Royden, Real Analysis, MacMillan Publishing Co., Inc., New York, 1968.Google Scholar
  27. [27]
    W. Rudin, Functional Analysis, McGraw-Hill Book Company, New York, 1973.zbMATHGoogle Scholar
  28. [28]
    R. Saeks and J. Murray, Fractional representation, algebraic geometry, and the simultaneous stabilizability problem, IEEE Trans. Automat. Contr. AC-27 (1982), pp. 895–903.MathSciNetCrossRefGoogle Scholar
  29. [29]
    J. M. Schumacher, A pointwise criterion for controller robustness, Systems & Control Letters 18 (1992), pp. 1–8.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    M. Vidyasagar, Control System Synthesis: A Factorization Approach, The MIT Press, Cambridge, Massachusetts, 1985.zbMATHGoogle Scholar
  31. [31]
    M. Vidyasagar, H. Schneider, and B. A. Francis, Algebraic and topological aspects of feedback stabilization, IEEE Trans. Automat. Contr. AC-27 (1982), pp. 880–894.MathSciNetCrossRefGoogle Scholar
  32. [32]
    G. Vinnicombe, Structured uncertainty and the graph topology, IEEE Trans. Automat. Contr. 38 (1993), pp. 1371–1383.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    G. Zames and A. K. El-Sakkary, Unstable systems and feedback: the gap metric, Proc. 16th Allerton Conf. (1980), pp. 380–385.Google Scholar
  34. [34]
    S. Q. Zhu, Graph topology and gap topology for unstable systems, IEEE Trans. Automat. Contr. AC-34 (1989), pp. 848–855.CrossRefGoogle Scholar
  35. [35]
    S. Q. Zhu, Robustness of complementarity and feedback stabilization, (preprint) 1992.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Li Qiu
    • 1
  • Daniel E. Miller
    • 2
  1. 1.Department of Electrical & Electronic EngineeringUniversity of Science & TechnologyKowloon, Hong KongChina
  2. 2.Dept. of Elect. & Comp. Eng.University of WaterlooWaterlooCanada

Personalised recommendations