Nest Algebras, Causality Constraints, and Multirate Robust Control

  • Tongwen Chen
  • Li Qiu
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 66)


Nest operators and nest algebras present a natural framework for studying causality constraints in multirate control systems [8]. In this article, we first give a tutorial on this framework and then look at robust stabilization of analog plants via multirate controllers and provide an explicit solution to the problem.


Robust Stabilization Nest Algebra Digital Control System Causality Constraint Nest Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. AL-RAHMANI AND G. F. FRANKLIN, A new optimal multirate control of linear periodic and time-varying systems, IEEE Trans. Automat. Control 35 (1990), pp. 406–415.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    M. ARAKI AND K. YAMAMOTO, Multivariable multirate sampled-data systems: state-space description, transfer characteristics, and Nyquist criterion, IEEE Trans. Automat. Control 30 (1986), pp. 145–154.MathSciNetCrossRefGoogle Scholar
  3. [3]
    W. ARVESON, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), pp. 208–233.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    B. BAMIEH AND J. B. PEARSON, A general framework for linear periodic systems with application to H221E; sampled-data control, IEEE Trans. Automat. Control 37 (1992), pp. 418–435.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    M. C. BERG, N. AMIT, AND J. POWELL, Multirate digital control system design, IEEE Trans. Automat. Control 33 (1988), pp. 1139–1150.zbMATHCrossRefGoogle Scholar
  6. [6]
    T. CHEN AND B. A. FRANCIS, On the £2-induced norm of a sampled-data system, Systems & Control Letters 36 (1990), pp. 211–219.MathSciNetCrossRefGoogle Scholar
  7. [7]
    T. CHEN AND B. A. FRANCIS, Sampled-data optimal design and robust stabilization, A.ME J. Dynamic Systems, Measurement, and Control 114 (1992), pp. 538–543.zbMATHCrossRefGoogle Scholar
  8. [8]
    T. CHEN AND L. QIU, H oc, design of general multirate sampled-data control systems,Automatica (1994) (to appear).Google Scholar
  9. [9]
    P. COLANERI, R. SCATTOLINI, AND N. SCHIAVONI, Stabilization of multirate sampled-data linear systems, Automatica 26 (1990), pp. 377–380.zbMATHCrossRefGoogle Scholar
  10. [10]
    M. A. DAHLEH, P. G. VOULGARIS, AND L. S. VALAVANI, Optimal and robust controllers for periodic and multirate systems, IEEE Trans. Automat. Control 37 (1992), pp. 90–99.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    C. DAVIS, M. M. KAHAN, AND H. F. WEINSBERGER, Norm-preserving dilations and their applications to optimal error bounds, SIAM J. Numer. Anal. 19 (1982), pp. 445–469.zbMATHCrossRefGoogle Scholar
  12. [12]
    K. R. DAVIDSON, Nest Algebras, Pitman Research Notes in Mathematics Series 191 Longman Scientific & Technical 1988.Google Scholar
  13. [13]
    A. FEINTUCH, P. P. KHARGONEKAR, AND A. TANNENBAUM, On the sensitivity minimization problem for linear time-varying periodic systems, SIAM J. Control and Optimization 24 (1986), pp. 1076–1085.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    B. A. FRANCIS, A Course in Control Theory, Springer-Verlag, New York 1987.zbMATHCrossRefGoogle Scholar
  15. [15]
    B. A. FRANCIS AND T. T. GEORGIOU, Stability theory for linear time-invariant plants with periodic digital controllers, IEEE Trans. Automat. Control 33 (1988), pp. 820–832.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    T. T. GEORGIOU AND P. P. KHARGONEKAR, A constructive algorithm for sensitivity optimization of periodic systems, SIAM J. Control and Optimization 25 (1987), pp. 334–340.MathSciNetCrossRefGoogle Scholar
  17. [17]
    K. GLOVER, D. J. N. LIMEBEER, J. C. DOYLE, E. M. KASENALLY, AND M. G. SAFONOV, A characterization of all solution to the four block general distance problem, SIAM J. Control and Optimization 29 (1991), pp. 283–324.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    T. HAGIWARA AND M. ARAKI, Design of a stable feedback controller based on the multirate sampling of the plant output, IEEE Trans. Automat. Control 33 (1988), pp. 812–819.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    S. HARA AND P. T. KABAMBA, Worst case analysis and design of sampled-data control systems, Proc. CDC (1990).Google Scholar
  20. [20]
    Y. HAYAKAWA, Y. YAMAMOTO, AND S. HARA, 7-too type problem for sampled-data control system—a solution via minimum energy characterization,Proc. CDC (1992) (to appear).Google Scholar
  21. [21]
    E. I. JURY AND F. J. MULLIN, The analysis of sampled-data control systems with a periodically time-varying sampling rate, IRE Trans. Automat. Control 4 (1959), pp. 15–21.Google Scholar
  22. [22]
    R. E. KALMAN AND J. E. BERTRAM, A unified approach to the theory of sampling systems, J. Franklin Inst. (267) (1959), pp. 405–436.Google Scholar
  23. [23]
    P. P. KHARGONEKAR, K. POOLLA, AND A. TANNENBAUM, Robust control of linear time-invariant plants using periodic compensation, IEEE Trans. Automat. Control 30 (1985), pp. 1088–1096.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    G. M. KRANC, Input-output analysis of multirate feedback systems, IRE Trans. Automat. Control 3 (1957), pp. 21–28.Google Scholar
  25. [25]
    D. G. MEYER, A parametrization of stabilizing controllers for multirate sampled-data systems, IEEE Trans. Automat. Control 35 (1990), pp. 233–236.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    D. G. MEYER, A new class of shift-varying operators, their shift-invariant equivalents, and multirate digital systems, IEEE Trans. Automat. Control 35 (1990), pp. 429–433.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    D. G. MEYER, Cost translation and a lifting approach to the multirate LQG problem, IEEE Trans. Automat. Control 37 (1992), pp. 1411–1415.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    R. A. MEYER AND C. S. BURRUS, A unified analysis of multirate and periodically time-varying digital filters, IEEE Trans. Circuits and Systems 22 (1975), pp. 162–168.MathSciNetCrossRefGoogle Scholar
  29. [29]
    S. PARROTT, On a quotient norm and the Sz.-Nagy-Foias lifting theorem, J. Functional Analysis 30 (1978), pp. 311–328.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    L. QIU AND T. CHEN, 7í2 and 7i ß designs of multirate sampled-data systems, Proc. ACC 1993. (Also appeared as) IMA Preprint Series (# 1062 ) 1992.Google Scholar
  31. [31]
    R. RAVI, P. P. KHARGONEKAR, K. D. MINTO, AND C. N. NETT, Controller parametrization for time-varying multirate plants, IEEE Trans. Automat. Control 35 (1990), pp. 1259–1262.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    M. E. SEZER AND D. D. SILJAK, Decentralized multirate control, IEEE Trans. Automat. Control 35 (1990), pp. 60–65.zbMATHCrossRefGoogle Scholar
  33. [33]
    W. SUN, K. M. NAGFAL, AND P. P. KHARGONEKAR, 7 00 control and filtering with sampled measurements, Proc. ACC (1991).Google Scholar
  34. [34]
    G. TADMOR, Optimal sampled-data control in continuous time systems, Proc. ACC (1991).Google Scholar
  35. [35]
    H. T. TOIVONEN, Sampled-data control of continuous-time systems with an 7 - L eo optimality criterion, Automatica 28 (1) (1992), pp. 45–54.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    P. G. VOULGARIS, M. A. DAHLEH, AND L. S. VALAVANI, 1-(00 and î 2 optimal controllers for periodic and multi-rate systems, Automatica 32 (1994), pp. 251–264.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Tongwen Chen
    • 1
  • Li Qiu
    • 2
    • 3
  1. 1.Dept. of Elect. & Comp. Engg.University of CalgaryCalgaryCanada
  2. 2.Inst. for Math. & Its Appl.University of MinnesotaMinneapolisUSA
  3. 3.Dept. of Elect. & Electronic Engg.Hong Kong University of Science & TechnologyKowloon, Hong KongChina

Personalised recommendations