Linearized Dynamics of Symmetric Lagrangian Systems

  • Debra Lewis
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 63)


The structure induced by the Lagrangian or Hamiltonian character of a mechanical system and its symmetries can make explicit analyses of the stability and bifurcation behavior tractable even for moderately large systems. The variational characterization of relative equilibria, i.e. steady motions generated by elements of the symmetry group, greatly simplifies many of the necessary calculations. Local minima modulo symmetries of an appropriate energy-momentum functional correspond to nonlinearly orbitally stable motions; if the second variation of the energy-momentum functional is positive (negative) definite on an appropriate subspace, the relative equilibrium is said to be formally stable. For finite dimensional systems, formal stability typically implies nonlinear orbital stability.


Tangent Space Internal Variation Relative Equilibrium Nonlinear Stability Reference Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Abraham, J.E. Marsden, Foundations of mechanics (1978), second edition, Benjamin/Cummings Publishing Company, Reading, MA.Google Scholar
  2. [2]
    J.M. Arms, V. Moncrief, J.M. Marsden, Symmetry and bifurcation of momentum maps, Comm. Math. Phys. 78 (1981), 455–478.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    H. Cohen, R.G. Muncaster, The theory of pseudo-rigid bodies (1988), Springer-Verlag, New York.MATHGoogle Scholar
  4. [4]
    D. Lewis, Bifurcation of liquid drops, Nonlinearity 6 (1993), 491–522.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    D. Lewis, Lagrangian block diagonalization, J. Dyn. and Diff. Eqs. 4 No. 1 (1992), 1–41.MATHCrossRefGoogle Scholar
  6. [6]
    D. Lewis, T.S. Ratiu, Linearized stability of relative equilibria,(tentative title) (1994), manuscript in preparation.Google Scholar
  7. [7]
    D. Lewis, T.S. Ratiu, J.C. SIMO, J.E. MARSDEN, The heavy top: a geometric treatment, Nonlinearity 5 (1992), 1–48.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    D. Lewis, J.C. Simo, Nonlinear stability of rotating pseudo-rigid bodies, Proc. R. Soc. Lond. A 427 (1990), 281–319.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    A. Bloch, P.S. Krishnaprasad, J.E. Marsden, T.S. Ratiu, Dissipation induced instabilities, Ann. Inst. Henri Poincaré, Analyse non linéare 11 (1) (1994), 3790.MathSciNetGoogle Scholar
  10. [10]
    K. Meyer, Symmetries and integrals in mechanics,Dynamical Systems (1973), 259–273, ed. M. Peixoto, Academic Press, New York.Google Scholar
  11. [11]
    J. Montaldi, M. Roberts, I. Stewart, Stability of normal modes of symmetric Hamiltonian systems, Nonlinearity 3 No. 3 (1990), 731–772.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    B. Riemann, Ein beitrag-zu den untersuchungen über die bewegung eines flüssigen gleichartigen ellipsoides, Abh. d. Königl. Gesell. der Wis. zu Göttingen 9 (1861), 3–36.Google Scholar
  13. [13]
    J.C. Simo, D. Lewis, J.E. Marsden, The stability of relative equilibria. Part I: the reduced energy-momentum method, The Archive for Rational Mechanics and Analysis 115 (1991), 15–60.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    J.C. Simo, T. Posbergh, J.E. Marsden, The stability of relative equilibria. Part II: application to nonlinear elasticity, The Archive for Rational Mechanics and Analysis 115 (1991), 61–100.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    J. Slawianowski, Analytical mechanics of finite homogeneous strains, Arch. Mech. 26 (1974), 569–587.MathSciNetMATHGoogle Scholar
  16. [16]
    S. Smale , Topology and Mechanics I,Inventiones mathematica 10 (1970a), 305–331.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    S. Smale, Topology and Mechanics II, Inventiones mathematica ll (1970b), 45–64.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Debra Lewis
    • 1
  1. 1.Mathematics BoardUniversity of California at Santa CruzSanta CruzUSA

Personalised recommendations