Skip to main content

Biomechanics Model for Skeletal Muscle Microcirculation with Reference to Red and White Blood Cell Perfusion and Autoregulation

  • Chapter
Cell Mechanics and Cellular Engineering

Abstract

While an expanding body of experimental observations on blood flow in skeletal muscle is accumulating (Granger et al., 1984), few efforts have been made to integrate these data into a unifying picture of the circulation based on microanatomy and properties of microvessel and blood. An analysis is useful since it unifies experimental observations and serves to interpret microvascular hemodynamics in terms of the properties of components that make up the microcirculation. A continuum analysis allows not only to explore the validity of numerous hypothesis but it also is a testing ground for our actual understanding of organ perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apter, J. T.; Graessley, W. W.: A physical model for muscular behavior. Biophysical J. 1970; 10: 539–555.

    Article  CAS  Google Scholar 

  • Bagge, U.: White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta. Physiol. Scand. 1980; 108: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Bohlen, H. G.; Harper, S. L.: Evidence of myogenic vascular control in the rat cerebral cortex. Circ. Res. 1984; 55: 554–559.

    PubMed  CAS  Google Scholar 

  • Borgström, P.; Grände, P.; Mellander, S.: A mathematical description of the myogenic response in the microcirculation. Acta Physio. Scand. 1982; 116: 363 – 376.

    Article  Google Scholar 

  • Braakman, R.; Sipkema, P.; Westerhof, N.: A dynamic nonlinear lumped parameter model for skeletal muscle circulation. Ann. Biomed. Eng. 1989; 17: 593–616.

    Article  PubMed  CAS  Google Scholar 

  • Braide, M.; Amundson, B.; Chien, S.; Bagge, U.: Quantitative studies on the influence of leukocytes on the vascular resistance in a skeletal muscle preparation. Microvasc. Res. 1984; 27:331–352.

    Article  PubMed  CAS  Google Scholar 

  • Burton, A. C.: On the physical equilibrium of small blood vessels. Am. J. Physiol. 1951; 164:319–329.

    PubMed  CAS  Google Scholar 

  • Chien, I. I. H.: A mathematical representation for vessel network. II J. Theoret. Biol. 1983; 104: 647–654.

    Article  Google Scholar 

  • Chien, I. I. H.: A mathematical representation for vessel network. III J. Theoret. Biol. 1984; 111: 115–121.

    Article  Google Scholar 

  • Cokelet, G. R.; Merrill, E. W.; Gilliland, E. R.; Shin, H.; Britten, A.; Wells, R. E.: The rheology of human blood measurement near and at zero shear rate. Trans. Soc. Rheol. 1963; 7: 303–317.

    Article  Google Scholar 

  • Davis, M. J.; Sikes, P. J.: Myogenic responses of isolated arterioles: test for a rate-sensitive mechanism. Am. J. Physiol. 1990; 259: 1890–1900.

    Google Scholar 

  • DeLano, F. A.; Schmid-Schönbein, G. W.; Skalak, T. C.; Zweifach, B. W.: Penetration of the systemic blood pressure into the microvasculature of rat skeletal muscle. Microvasc. Res. 1991; 41:92–110.

    Article  PubMed  CAS  Google Scholar 

  • Engelson, E. T.; Schmid-Schönbein, G. W.; Zweifach, B. W.: The microvasculature in skeletal muscle. III. Venous network anatomy in normotensive and spontaneously hypertensive rats. Microvasc. Res. 1985; 4: 229–248.

    CAS  Google Scholar 

  • Engelson, E. T.; Schmid-Schönbein, G. W.; Zweifach, B. W.: The microvasculature in skeletal muscle. II. Arteriolar network anatomy in normotensive and hypertensive rats. Microvasc. Res. 1986; 31:356–374.

    Article  PubMed  CAS  Google Scholar 

  • Engelson, E. T.; Skalak, T. C.; Schmid-Schönbein, G. W.: The microvasculature in skeletal muscle. I. Arteriolar network topology. Microvasc. Res. 1985; 30: 29–44.

    Article  PubMed  CAS  Google Scholar 

  • Falcone, J. C.; Davis, M. J.; Meininger, G. A.: Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am. J. Physiol. 1991; 260:H130-H135.

    PubMed  CAS  Google Scholar 

  • Fenster, M. A.: A mathematical hemodynamic model of the microcirculation in skeletal muscle, including passive and active vessel properties, hematocrit and blood rheology. M.S. Thesis, University of California San Diego, 1992.

    Google Scholar 

  • Fung, Y. C.: Biodynamics: Circulation. New York: Springer-Verlag; 1984.

    Google Scholar 

  • Fung, Y. C.: Biomechanics: Mechanical Properties of Living Tissue. New York: Springer-Verlag; 1993.

    Google Scholar 

  • Granger, H.; Meininger, G. A.; Borders, J. L.; Morff, R. J.; Goodman, A. H.: Microcirculation of skeletal muscle. Phys. Pharm. Microcirc. 1984; 2: 181–265.

    Google Scholar 

  • Iida, N.: Physical properties of resistance vessel wall in peripheral blood flow regulation — I. Mathematical model. J. Biomech. 1989; 22: 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, P. A.; Duling, B. R.: Myogenic response and wall mechanics of arterioles. Am. J. Physiol. 1989; 257: H1147-H1155.

    PubMed  CAS  Google Scholar 

  • Jerome, S. N.; Smith, C. W.; Korthuis, R. J.: CD18-dependent adherence reactions play an important role in the development of the no-reflow phenomenon. J. Appl. Physiol. 1993; 264: H479-H483.

    CAS  Google Scholar 

  • Johnson, P. C.: The myogenic response. In: Bohr, D. F.; Somlyo, A. P.; Sparks, H. V. J.; Geiger, S. R. (eds.) Handbook of Physiology, Section 2, The Cardiovascular System Bethesda, MD: American Physiological Society; 1980: p. 409–442.

    Google Scholar 

  • Johnson, P. C.: The myogenic response. News Physiol. Sci., 1991; 9: 41–42.

    Google Scholar 

  • Johnson, P. C.; Intaglietta, M: Contributions of pressure and flow sensitivity to autoregulation in mesenteric arterioles. Am. J. Physiol. 1976; 231: 1686–1698.

    PubMed  CAS  Google Scholar 

  • Koch, A. R.: Some mathematical forms of autoregulatory models. Circ. Res. 1964; 14: 1269–1278

    Google Scholar 

  • Koch, A. R.: Some mathematical forms of autoregulatory models. Circ. Res. 1964 15:1269–1278.

    Google Scholar 

  • Koller, A.; Dawant, B.; Liu, A.; Popel, A. S.; Johnson, P. C.: Quantitative analysis of arteriolar network architecture in cat sartorius muscle. Am. J. Physiol. 1987; 253: H154-H164.

    PubMed  CAS  Google Scholar 

  • Koller, A.; Johnson, P. C.: Methods for in vivo mapping and classifying microvascular networks in skeletal muscle. In: Popel, A. S.; Johnson, P. C. (eds.) Microvascular networks: Experimental and theoretical studies. Basel: Karger; 1986: p. 27–37.

    Google Scholar 

  • Koller, A.; Kaley, G.: Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ. Res. 1990; 67: 529–534.

    PubMed  CAS  Google Scholar 

  • Koller, A.; Seyedi, N.; Gerritsen, M. E.; Kaley, G.: EDRF released from microvascular endothelial cells dilates arterioles in vivo. Am. J. Physiol. 1991; 261:H128–H133.

    PubMed  CAS  Google Scholar 

  • Kuo, L.; Chilian, W. M.; Davis, M. J.: Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 1990; 66:860–866.

    PubMed  CAS  Google Scholar 

  • Kuo, L.; Davis, M. J.; Chilian, W. M.: Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am. J. Physiol. 1988; 255: H1558-H1562.

    PubMed  CAS  Google Scholar 

  • Kuo, L.; Davis, M. J.; Chilian, W. M.: Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 1990; 259: H1063-H1070.

    PubMed  CAS  Google Scholar 

  • Kuo, L.; Davis, M. J.; Chilian, W. M.: Endothelial modulation of arteriolar tone. News Physiol. Sci., 1992; 7: 5–9.

    Google Scholar 

  • Kurthius, R. J.; Grisham, M. B.; Granger, D. N.: Leukocyte depletion attenuates vascular injury in postischemic skeletal muscle. Am. J. Physiol. 1988; 254: H823-H827.

    Google Scholar 

  • Lee, J.: The morphometry and mechanical properties of skeletal muscle capillaries. Ph.D. Dissertation, University of California San Diego, 1990.

    Google Scholar 

  • Lee, S.: A biomechanical model of the skeletal muscle microcirculation with pulsatile pressure and the myogenic response. Ph.D., University of California San Diego, 1993.

    Google Scholar 

  • Lee, S. Y.; Schmid-Schönbein, G. W.: Pulsatile pressure and flow in the skeletal muscle microcirculation. J. Biomech. Eng. 1990; 112:437–443.

    Article  PubMed  CAS  Google Scholar 

  • Nobis, U.; Pries, A. R.; Cokelet, G. R.; Gaehtgens, P.: Radial distribution of white cells during blood flow in small tubes. Microvasc. Res. 1984; 29: 295–304.

    Article  Google Scholar 

  • Papenfuss, H. D.; Gross, J. F.: Mathematical simulation of blood flow in microcirculatory networks. In: Popel, A. S.; Johnson, P. C. (eds.) Microvascular Networks: Experimental and Theoretical Studies. Basel: Karger; 1986: p. 168–181.

    Google Scholar 

  • Popel, A. S.: Network models of peripheral circulation. In: Skalak, R.; Chien, S. (eds.) Handbook of Bioengineering. New York: McGraw Hill; 1987: p. 20.1–20.24.

    Google Scholar 

  • Popel, A. S.; Torres-Filho, I. P.; Johnson, P. C.; Bonskela, E.: A new schema for hierarchical classification of anastomosing vessels. Int. J. Microcirc. Clin. Exp. 1988; 7: 131–138.

    PubMed  CAS  Google Scholar 

  • Pries, A. R.; Secom, T. W.; Gaehtgens, P.; Gross, J. F.: Blood flow in microvascular networks: Experiments and simulation. Circ. Res. 1990; 67: 826–834.

    PubMed  CAS  Google Scholar 

  • Reinke, W.; Gaehtgens, P.; Johnson, P. C.: Blood viscosity in small tubes: effect of shear rate, red cell aggregation, and sedimentation. Am J. Physiol. 1987; 253: H540-H547.

    PubMed  CAS  Google Scholar 

  • Saltzman, D. J.: Adrenergic innervation of arterioles in normotensive and spontaneously hypertensive rats. M.S. Thesis, University of California, San Diego, 1993.

    Google Scholar 

  • Saunders, R. L. d. C. H.; Lawrence, E. J.; Maciner, D. A.; Nementhy, N.: The anatomical basis of the peripheral circulation in man. On the concept of macromesh and micromesh as illustrated by the blood supply in man. In: Redish, L.; Tango, F. F.; Sauders, R. L. d. C. H. (eds.) Peripheral Circulation in Health and Disease. New York: Grune & Stratton; 1957: p.

    Google Scholar 

  • Schmid-Schönbein, G. W.: Mechanisms of granulocyte-capillary-plugging. Prog. Appl. Microcirc. 1987; 12: 223–230.

    Google Scholar 

  • Schmid-Schönbein, G. W.: A theory of blood flow in skeletal muscle. J. Biomech. Eng. 1988; 110:20–26.

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein, G. W.; DeLano, F. A.; Chu, S.; Zweifach, B. W.: Wall structure of arteries and arterioles feeding the spinotrapezius muscle of normotensive and spontaneously hypertensive rats. Int. J. Microcirc: Clin. Exp. 1990; 9: 47–66.

    Google Scholar 

  • Schmid-Schönbein, G. W.; Firestone, G.; Zweifach, B. W.: Network anatomy of arteries feeding the spinotrapezius muscle in normotensive and hypertensive rats. Blood Vessels 1986; 23: 34–39.

    PubMed  Google Scholar 

  • Schmid-Schönbein, G. W.; Lee, S. Y.; Sutton, D. W.: Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: Application to pressure and flow transient. Biorheology 1989; 26:215–227.

    PubMed  Google Scholar 

  • Schmid-Schönbein, G. W.; Murakami, H.: Blood flow in contracting arterioles. Int. J. Microcirc. Clin. Exp. 1985; 4: 311–328.

    PubMed  Google Scholar 

  • Schmid-Schönbein, G. W.; Skalak, T. C.; Firestone, G.: The microvasculature in skeletal muscle. V. The arteriolar and venular arcades in normotensive and hypertensive rats. Microvasc. Res. 1987; 34:385–393.

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein, G. W.; Skalak, T. C.; Sutton, D. W.: Bioengineering analysis of blood flow in resting skeletal muscle. In: Lee, J. S.; Skalak, T. C. (eds.) Microvascular Mechanics. New York: Springer Verlag; 1989: p. 65–99.

    Chapter  Google Scholar 

  • Schmid-Schönbein, G. W.; Zweifach, B. W.; Delano, F. A.; Chen, P. C.: Microvascular tone in a skeletal muscle of spontaneously hypertensive rats. Hypertension 1987; 9: 164–171

    PubMed  Google Scholar 

  • Secomb, T. W.; Pries, A. R.; Gaehtgens, P.; Gross, J. F.: Theoretical and experimental analysis of hematocrit distribution in microvascular networks. In: Lee, J.-S.; Skalak, T. C. (eds.) Microvascular Mechanics. New York: Springer Verlag; 1989: p. 39–49.

    Chapter  Google Scholar 

  • Skalak, T. C.: A mathematical hemodynamic network model of the microcirculation in skeletal muscle, using measured blood vessel distensibility and topology. Ph.D. Dissertation, University of California, San Diego, 1984.

    Google Scholar 

  • Skalak, T. C.; Schmid-Schönbein, G. W.: The microvasculature in skeletal muscle. IV. A model of the capillary network. Microvasc. Res. 1986a; 32: 333–347.

    Article  PubMed  CAS  Google Scholar 

  • Skalak, T. C.; Schmid-Schönbein, G. W.: Viscoelastic properties of microvessels in rat spinotrapezius muscle. J. Biomech. Eng. 1986b; 108: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Skalak, T. C.; Schmid-Schönbein, G. W.; Zweifach, B. W.: New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc. Res. 1984; 28: 95–112.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, D. W.; Schmid-Schönbein, G. W.: Hemodynamics at low flow in the resting, vasodilated rat skeletal muscle. Am. J. Physiol. 1989; 257: H1419-H1427.

    PubMed  CAS  Google Scholar 

  • Sutton, D. W.; Schmid-Schönbein, G. W.: The pressure-flow relation for plasma in whole organ skeletal muscle and its verification. J. Biomech. Eng. 1991; 113:452–457.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, D. W.; Schmid-Schönbein, G. W.: Elevation of organ resistance due to leukocyte perfusion. Am. J. Physiol. 1992; 262: H1646-H1650.

    PubMed  CAS  Google Scholar 

  • Thompson, T. N.; La Celle, P. L.; Cokelet, G. R.: Perturbation of red cell flow in small tubes by white blood cells. PflĂĽgers Arch. 1989; 413: 372–377.

    Article  PubMed  CAS  Google Scholar 

  • Ursino, M.; Fabbri, G.: Role of the myogenic mechanism in the genesis of microvascular oscillations (vasomotion): analysis with a mathematical model. Microvasc. Res. 1992; 43: 156–177.

    Article  PubMed  CAS  Google Scholar 

  • Warnke, K. C.; Skalak, T. C.: The effects of leukocytes on blood flow in a model skeletal muscle capillary network. Microvasc. Res. 1990; 40: 118–136.

    Article  PubMed  CAS  Google Scholar 

  • Woldenberg, M. J.: Quantitative analysis of biological and fluvial networks. In: Popel, A. S.; Johnson, P. C. (eds.) Microvascular Networks: Experimental and Theoretical Studies. Karger Basel; 1986: p. 12–26.

    Google Scholar 

  • Yen, R. T.; Zhuang, F. Y.; Fung, Y. C.; Tremer, H.; Sobin, S. S.: Morphometry of the cat’s pulmonary arterial tree. J. Biomech. Eng. 1984; 106: 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Zweifach, B. W.; Kovalcheck, S.; DeLano, F.; Chen, P.: Micropressure-flow relationships in a skeletal muscle of spontaneously hypertensive rats. Hypertension 1981; 3: 601–614.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Lee, S., Sutton, D., Fenster, M., Schmid-Schönbein, G.W. (1994). Biomechanics Model for Skeletal Muscle Microcirculation with Reference to Red and White Blood Cell Perfusion and Autoregulation. In: Mow, V.C., Tran-Son-Tay, R., Guilak, F., Hochmuth, R.M. (eds) Cell Mechanics and Cellular Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8425-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8425-0_29

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8427-4

  • Online ISBN: 978-1-4613-8425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics