Advertisement

Biomechanics Model for Skeletal Muscle Microcirculation with Reference to Red and White Blood Cell Perfusion and Autoregulation

  • S. Lee
  • D. Sutton
  • M. Fenster
  • G. W. Schmid-Schönbein

Abstract

While an expanding body of experimental observations on blood flow in skeletal muscle is accumulating (Granger et al., 1984), few efforts have been made to integrate these data into a unifying picture of the circulation based on microanatomy and properties of microvessel and blood. An analysis is useful since it unifies experimental observations and serves to interpret microvascular hemodynamics in terms of the properties of components that make up the microcirculation. A continuum analysis allows not only to explore the validity of numerous hypothesis but it also is a testing ground for our actual understanding of organ perfusion.

Keywords

Stretch Ratio Microvascular Network Biochemical Model Myogenic Response Network Anatomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apter, J. T.; Graessley, W. W.: A physical model for muscular behavior. Biophysical J. 1970; 10: 539–555.CrossRefGoogle Scholar
  2. Bagge, U.: White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta. Physiol. Scand. 1980; 108: 159–163.PubMedCrossRefGoogle Scholar
  3. Bohlen, H. G.; Harper, S. L.: Evidence of myogenic vascular control in the rat cerebral cortex. Circ. Res. 1984; 55: 554–559.PubMedGoogle Scholar
  4. Borgström, P.; Grände, P.; Mellander, S.: A mathematical description of the myogenic response in the microcirculation. Acta Physio. Scand. 1982; 116: 363 – 376.CrossRefGoogle Scholar
  5. Braakman, R.; Sipkema, P.; Westerhof, N.: A dynamic nonlinear lumped parameter model for skeletal muscle circulation. Ann. Biomed. Eng. 1989; 17: 593–616.PubMedCrossRefGoogle Scholar
  6. Braide, M.; Amundson, B.; Chien, S.; Bagge, U.: Quantitative studies on the influence of leukocytes on the vascular resistance in a skeletal muscle preparation. Microvasc. Res. 1984; 27:331–352.PubMedCrossRefGoogle Scholar
  7. Burton, A. C.: On the physical equilibrium of small blood vessels. Am. J. Physiol. 1951; 164:319–329.PubMedGoogle Scholar
  8. Chien, I. I. H.: A mathematical representation for vessel network. II J. Theoret. Biol. 1983; 104: 647–654.CrossRefGoogle Scholar
  9. Chien, I. I. H.: A mathematical representation for vessel network. III J. Theoret. Biol. 1984; 111: 115–121.CrossRefGoogle Scholar
  10. Cokelet, G. R.; Merrill, E. W.; Gilliland, E. R.; Shin, H.; Britten, A.; Wells, R. E.: The rheology of human blood measurement near and at zero shear rate. Trans. Soc. Rheol. 1963; 7: 303–317.CrossRefGoogle Scholar
  11. Davis, M. J.; Sikes, P. J.: Myogenic responses of isolated arterioles: test for a rate-sensitive mechanism. Am. J. Physiol. 1990; 259: 1890–1900.Google Scholar
  12. DeLano, F. A.; Schmid-Schönbein, G. W.; Skalak, T. C.; Zweifach, B. W.: Penetration of the systemic blood pressure into the microvasculature of rat skeletal muscle. Microvasc. Res. 1991; 41:92–110.PubMedCrossRefGoogle Scholar
  13. Engelson, E. T.; Schmid-Schönbein, G. W.; Zweifach, B. W.: The microvasculature in skeletal muscle. III. Venous network anatomy in normotensive and spontaneously hypertensive rats. Microvasc. Res. 1985; 4: 229–248.Google Scholar
  14. Engelson, E. T.; Schmid-Schönbein, G. W.; Zweifach, B. W.: The microvasculature in skeletal muscle. II. Arteriolar network anatomy in normotensive and hypertensive rats. Microvasc. Res. 1986; 31:356–374.PubMedCrossRefGoogle Scholar
  15. Engelson, E. T.; Skalak, T. C.; Schmid-Schönbein, G. W.: The microvasculature in skeletal muscle. I. Arteriolar network topology. Microvasc. Res. 1985; 30: 29–44.PubMedCrossRefGoogle Scholar
  16. Falcone, J. C.; Davis, M. J.; Meininger, G. A.: Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am. J. Physiol. 1991; 260:H130-H135.PubMedGoogle Scholar
  17. Fenster, M. A.: A mathematical hemodynamic model of the microcirculation in skeletal muscle, including passive and active vessel properties, hematocrit and blood rheology. M.S. Thesis, University of California San Diego, 1992.Google Scholar
  18. Fung, Y. C.: Biodynamics: Circulation. New York: Springer-Verlag; 1984.Google Scholar
  19. Fung, Y. C.: Biomechanics: Mechanical Properties of Living Tissue. New York: Springer-Verlag; 1993.Google Scholar
  20. Granger, H.; Meininger, G. A.; Borders, J. L.; Morff, R. J.; Goodman, A. H.: Microcirculation of skeletal muscle. Phys. Pharm. Microcirc. 1984; 2: 181–265.Google Scholar
  21. Iida, N.: Physical properties of resistance vessel wall in peripheral blood flow regulation — I. Mathematical model. J. Biomech. 1989; 22: 109–117.PubMedCrossRefGoogle Scholar
  22. Jackson, P. A.; Duling, B. R.: Myogenic response and wall mechanics of arterioles. Am. J. Physiol. 1989; 257: H1147-H1155.PubMedGoogle Scholar
  23. Jerome, S. N.; Smith, C. W.; Korthuis, R. J.: CD18-dependent adherence reactions play an important role in the development of the no-reflow phenomenon. J. Appl. Physiol. 1993; 264: H479-H483.Google Scholar
  24. Johnson, P. C.: The myogenic response. In: Bohr, D. F.; Somlyo, A. P.; Sparks, H. V. J.; Geiger, S. R. (eds.) Handbook of Physiology, Section 2, The Cardiovascular System Bethesda, MD: American Physiological Society; 1980: p. 409–442.Google Scholar
  25. Johnson, P. C.: The myogenic response. News Physiol. Sci., 1991; 9: 41–42.Google Scholar
  26. Johnson, P. C.; Intaglietta, M: Contributions of pressure and flow sensitivity to autoregulation in mesenteric arterioles. Am. J. Physiol. 1976; 231: 1686–1698.PubMedGoogle Scholar
  27. Koch, A. R.: Some mathematical forms of autoregulatory models. Circ. Res. 1964; 14: 1269–1278Google Scholar
  28. Koch, A. R.: Some mathematical forms of autoregulatory models. Circ. Res. 1964 15:1269–1278.Google Scholar
  29. Koller, A.; Dawant, B.; Liu, A.; Popel, A. S.; Johnson, P. C.: Quantitative analysis of arteriolar network architecture in cat sartorius muscle. Am. J. Physiol. 1987; 253: H154-H164.PubMedGoogle Scholar
  30. Koller, A.; Johnson, P. C.: Methods for in vivo mapping and classifying microvascular networks in skeletal muscle. In: Popel, A. S.; Johnson, P. C. (eds.) Microvascular networks: Experimental and theoretical studies. Basel: Karger; 1986: p. 27–37.Google Scholar
  31. Koller, A.; Kaley, G.: Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ. Res. 1990; 67: 529–534.PubMedGoogle Scholar
  32. Koller, A.; Seyedi, N.; Gerritsen, M. E.; Kaley, G.: EDRF released from microvascular endothelial cells dilates arterioles in vivo. Am. J. Physiol. 1991; 261:H128–H133.PubMedGoogle Scholar
  33. Kuo, L.; Chilian, W. M.; Davis, M. J.: Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 1990; 66:860–866.PubMedGoogle Scholar
  34. Kuo, L.; Davis, M. J.; Chilian, W. M.: Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am. J. Physiol. 1988; 255: H1558-H1562.PubMedGoogle Scholar
  35. Kuo, L.; Davis, M. J.; Chilian, W. M.: Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 1990; 259: H1063-H1070.PubMedGoogle Scholar
  36. Kuo, L.; Davis, M. J.; Chilian, W. M.: Endothelial modulation of arteriolar tone. News Physiol. Sci., 1992; 7: 5–9.Google Scholar
  37. Kurthius, R. J.; Grisham, M. B.; Granger, D. N.: Leukocyte depletion attenuates vascular injury in postischemic skeletal muscle. Am. J. Physiol. 1988; 254: H823-H827.Google Scholar
  38. Lee, J.: The morphometry and mechanical properties of skeletal muscle capillaries. Ph.D. Dissertation, University of California San Diego, 1990.Google Scholar
  39. Lee, S.: A biomechanical model of the skeletal muscle microcirculation with pulsatile pressure and the myogenic response. Ph.D., University of California San Diego, 1993.Google Scholar
  40. Lee, S. Y.; Schmid-Schönbein, G. W.: Pulsatile pressure and flow in the skeletal muscle microcirculation. J. Biomech. Eng. 1990; 112:437–443.PubMedCrossRefGoogle Scholar
  41. Nobis, U.; Pries, A. R.; Cokelet, G. R.; Gaehtgens, P.: Radial distribution of white cells during blood flow in small tubes. Microvasc. Res. 1984; 29: 295–304.CrossRefGoogle Scholar
  42. Papenfuss, H. D.; Gross, J. F.: Mathematical simulation of blood flow in microcirculatory networks. In: Popel, A. S.; Johnson, P. C. (eds.) Microvascular Networks: Experimental and Theoretical Studies. Basel: Karger; 1986: p. 168–181.Google Scholar
  43. Popel, A. S.: Network models of peripheral circulation. In: Skalak, R.; Chien, S. (eds.) Handbook of Bioengineering. New York: McGraw Hill; 1987: p. 20.1–20.24.Google Scholar
  44. Popel, A. S.; Torres-Filho, I. P.; Johnson, P. C.; Bonskela, E.: A new schema for hierarchical classification of anastomosing vessels. Int. J. Microcirc. Clin. Exp. 1988; 7: 131–138.PubMedGoogle Scholar
  45. Pries, A. R.; Secom, T. W.; Gaehtgens, P.; Gross, J. F.: Blood flow in microvascular networks: Experiments and simulation. Circ. Res. 1990; 67: 826–834.PubMedGoogle Scholar
  46. Reinke, W.; Gaehtgens, P.; Johnson, P. C.: Blood viscosity in small tubes: effect of shear rate, red cell aggregation, and sedimentation. Am J. Physiol. 1987; 253: H540-H547.PubMedGoogle Scholar
  47. Saltzman, D. J.: Adrenergic innervation of arterioles in normotensive and spontaneously hypertensive rats. M.S. Thesis, University of California, San Diego, 1993.Google Scholar
  48. Saunders, R. L. d. C. H.; Lawrence, E. J.; Maciner, D. A.; Nementhy, N.: The anatomical basis of the peripheral circulation in man. On the concept of macromesh and micromesh as illustrated by the blood supply in man. In: Redish, L.; Tango, F. F.; Sauders, R. L. d. C. H. (eds.) Peripheral Circulation in Health and Disease. New York: Grune & Stratton; 1957: p.Google Scholar
  49. Schmid-Schönbein, G. W.: Mechanisms of granulocyte-capillary-plugging. Prog. Appl. Microcirc. 1987; 12: 223–230.Google Scholar
  50. Schmid-Schönbein, G. W.: A theory of blood flow in skeletal muscle. J. Biomech. Eng. 1988; 110:20–26.PubMedCrossRefGoogle Scholar
  51. Schmid-Schönbein, G. W.; DeLano, F. A.; Chu, S.; Zweifach, B. W.: Wall structure of arteries and arterioles feeding the spinotrapezius muscle of normotensive and spontaneously hypertensive rats. Int. J. Microcirc: Clin. Exp. 1990; 9: 47–66.Google Scholar
  52. Schmid-Schönbein, G. W.; Firestone, G.; Zweifach, B. W.: Network anatomy of arteries feeding the spinotrapezius muscle in normotensive and hypertensive rats. Blood Vessels 1986; 23: 34–39.PubMedGoogle Scholar
  53. Schmid-Schönbein, G. W.; Lee, S. Y.; Sutton, D. W.: Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: Application to pressure and flow transient. Biorheology 1989; 26:215–227.PubMedGoogle Scholar
  54. Schmid-Schönbein, G. W.; Murakami, H.: Blood flow in contracting arterioles. Int. J. Microcirc. Clin. Exp. 1985; 4: 311–328.PubMedGoogle Scholar
  55. Schmid-Schönbein, G. W.; Skalak, T. C.; Firestone, G.: The microvasculature in skeletal muscle. V. The arteriolar and venular arcades in normotensive and hypertensive rats. Microvasc. Res. 1987; 34:385–393.PubMedCrossRefGoogle Scholar
  56. Schmid-Schönbein, G. W.; Skalak, T. C.; Sutton, D. W.: Bioengineering analysis of blood flow in resting skeletal muscle. In: Lee, J. S.; Skalak, T. C. (eds.) Microvascular Mechanics. New York: Springer Verlag; 1989: p. 65–99.CrossRefGoogle Scholar
  57. Schmid-Schönbein, G. W.; Zweifach, B. W.; Delano, F. A.; Chen, P. C.: Microvascular tone in a skeletal muscle of spontaneously hypertensive rats. Hypertension 1987; 9: 164–171PubMedGoogle Scholar
  58. Secomb, T. W.; Pries, A. R.; Gaehtgens, P.; Gross, J. F.: Theoretical and experimental analysis of hematocrit distribution in microvascular networks. In: Lee, J.-S.; Skalak, T. C. (eds.) Microvascular Mechanics. New York: Springer Verlag; 1989: p. 39–49.CrossRefGoogle Scholar
  59. Skalak, T. C.: A mathematical hemodynamic network model of the microcirculation in skeletal muscle, using measured blood vessel distensibility and topology. Ph.D. Dissertation, University of California, San Diego, 1984.Google Scholar
  60. Skalak, T. C.; Schmid-Schönbein, G. W.: The microvasculature in skeletal muscle. IV. A model of the capillary network. Microvasc. Res. 1986a; 32: 333–347.PubMedCrossRefGoogle Scholar
  61. Skalak, T. C.; Schmid-Schönbein, G. W.: Viscoelastic properties of microvessels in rat spinotrapezius muscle. J. Biomech. Eng. 1986b; 108: 193–200.PubMedCrossRefGoogle Scholar
  62. Skalak, T. C.; Schmid-Schönbein, G. W.; Zweifach, B. W.: New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc. Res. 1984; 28: 95–112.PubMedCrossRefGoogle Scholar
  63. Sutton, D. W.; Schmid-Schönbein, G. W.: Hemodynamics at low flow in the resting, vasodilated rat skeletal muscle. Am. J. Physiol. 1989; 257: H1419-H1427.PubMedGoogle Scholar
  64. Sutton, D. W.; Schmid-Schönbein, G. W.: The pressure-flow relation for plasma in whole organ skeletal muscle and its verification. J. Biomech. Eng. 1991; 113:452–457.PubMedCrossRefGoogle Scholar
  65. Sutton, D. W.; Schmid-Schönbein, G. W.: Elevation of organ resistance due to leukocyte perfusion. Am. J. Physiol. 1992; 262: H1646-H1650.PubMedGoogle Scholar
  66. Thompson, T. N.; La Celle, P. L.; Cokelet, G. R.: Perturbation of red cell flow in small tubes by white blood cells. Pflügers Arch. 1989; 413: 372–377.PubMedCrossRefGoogle Scholar
  67. Ursino, M.; Fabbri, G.: Role of the myogenic mechanism in the genesis of microvascular oscillations (vasomotion): analysis with a mathematical model. Microvasc. Res. 1992; 43: 156–177.PubMedCrossRefGoogle Scholar
  68. Warnke, K. C.; Skalak, T. C.: The effects of leukocytes on blood flow in a model skeletal muscle capillary network. Microvasc. Res. 1990; 40: 118–136.PubMedCrossRefGoogle Scholar
  69. Woldenberg, M. J.: Quantitative analysis of biological and fluvial networks. In: Popel, A. S.; Johnson, P. C. (eds.) Microvascular Networks: Experimental and Theoretical Studies. Karger Basel; 1986: p. 12–26.Google Scholar
  70. Yen, R. T.; Zhuang, F. Y.; Fung, Y. C.; Tremer, H.; Sobin, S. S.: Morphometry of the cat’s pulmonary arterial tree. J. Biomech. Eng. 1984; 106: 131–136.PubMedCrossRefGoogle Scholar
  71. Zweifach, B. W.; Kovalcheck, S.; DeLano, F.; Chen, P.: Micropressure-flow relationships in a skeletal muscle of spontaneously hypertensive rats. Hypertension 1981; 3: 601–614.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • S. Lee
  • D. Sutton
  • M. Fenster
  • G. W. Schmid-Schönbein

There are no affiliations available

Personalised recommendations