Skip to main content

Deformation-Induced Calcium Signaling in Articular Chondrocytes

  • Chapter

Abstract

Under normal physiological conditions, articular cartilage provides a nearly frictionless surface for the transmission and distribution of joint loads. The ultrastructure and composition of cartilage, which allow for this unique function, are maintained through a balance of the anabolic and catabolic activities of the chondrocyte cell population, which comprises a small fraction (1–10% by volume) of the tissue (Stockwell, 1979). Chondrocyte metabolic activity is regulated by both genetic and environmental factors, such as soluble mediators (e.g., cytokines, hormones) and physical stimuli (hydrostatic and osmotic pressures, mechanical load). This ability to regulate metabolic activity in response to the mechanical environment provides a means by which chondrocytes can alter the structure and composition, and hence the mechanical properties of the extracellular matrix, to the physical demands of the body (Gray et al., 1988; Gray et al., 1989; Guilak et al., 1994b; Helminen et al., 1987; Helminen et al., 1992; Jones et al., 1982; Sah et al., 1989; Schneiderman et al., 1986; Tammi et al., 1987; also see review by Mow et al., 1994, this volume). Under abnormal conditions, however, mechanical loads are believed to be an important factor in the initiation and progression of joint degeneration (Howell et al., 1992; Moskowitz, 1992).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andresen, M.C.; Yang, M.Y. Gadolinium and mechanotransduction of rat aortic baroreceptors. Am J Physiol. 262:H1415-H1421; 1992.

    PubMed  CAS  Google Scholar 

  • Banes, A.J.; Sanderson, M.; Boitano, S.; Hu, P.; Baird, C.; Brigman, B.; Tsuzaki, M.; Fischer, T.; Lawrence, W.T. Mechanical load ± growth factors induce [Ca2+]i release, cyclin Dl expression and DNA synthesis in avian tendon cells. In Mow, V.C.; Guilak, F.; Tran-Son-Tay, R.; Hochmuth, R.M. eds. Cell Mechanics and Cellular Engineering. New York: Springer Verlag, in press, 1994.

    Google Scholar 

  • Ben-Ze’ev, A. Animal cell shape changes and gene expression. BioEssays 13:207–212; 1991.

    Article  PubMed  Google Scholar 

  • Boitano, S.; Dirksen, E.R.; Sanderson, M.J. Intercellular propagation of calcium waves mediated by inositol triphosphate. Science Wash DC. 256:292–295; 1992.

    Article  Google Scholar 

  • Brighton, C.T.; Sennet, B.J.; Farmer, J.C.; Iannotti, J.P.; Hansen, CA.; Williams, J.L.; Williamson, J. The inositol phosphate pathway as a mediator in the proliferative response of rat calvarial bone cells to cyclical biaxial mechanical strain. J Orthop Res, 10:385–393; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Broom, N.D.; Myers, D.B.: A study of the structural response of wet hyaline cartilage to various loading conditions. Conn Tiss Res. 7:227–237; 1980.

    Article  CAS  Google Scholar 

  • Burmeister G.R.; Menche, D.; Merryman, P.; Klein, M.; Winchester, R. Applications of monoclonal antibodies to the characterization of cells eluted from human articular cartilage. Arthr Rheum. 26:1187–1195; 1983.

    Article  Google Scholar 

  • Carafoli, E. Intracellular calcium homeostasis. Anu Rev Biochem. 56:395–404; 1987.

    Article  CAS  Google Scholar 

  • Carosi, J.A.; Eskin, S.G.; McIntire, L.V. Cyclical strain effects on production of vasoactive materials in cultured endothelial cells. J Cell Physiol. 151:29–36; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Charles; A.C.; Merrill, J.E.; Dirksen, E.R.; Sanderson, M.J. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron. 6:983–992; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Charles; A.C.; Naus, C.; Zhu, D.; Dirksen, E.R.; Sanderson, M.J. Calcium waves propagate via gap junctions in glioma cells transfected with connexin 43. Soc Neurosci Abstr. 17:1147; 1991.

    Google Scholar 

  • Civitelli, R.; Beyer, E.C.; Warlow, P.M.; Robertson, A.J.; Geist, S.T.; Steinberg, T.H. Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest. 91:1888–1896; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh, K.; Kline, W.G.; Sawyer, B.D. Role of calcium in the phenotypic expression of rabbit articular chondrocytes in culture. FEBS Lett. 67:48–51; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh, K.; Kline, W.G.; Sawyer, B.D. Effects of calcitonin and parathyroid hormone on the metabolism of chondrocytes in culture. Biochim Biophys Acta. 499:28–35; 1977.

    PubMed  CAS  Google Scholar 

  • Donahue, H.J.; Guilak, F.; Grande, D.; Bibb, M.; Porres, L.; McLeod, K.J.; Rubin, C.T.; Grine, E.; Hertzberg, E.; Brink, P. Intercellular communication via gap junctions in chondrocytes isolated from mature articular cartilage. Trans Orthop Res Soc. 19:375; 1994.

    Google Scholar 

  • Duncan, R.; Misler, S. Voltage-activated and stretch-activated Ba2+ conducting channels in an osteoblast-like cell line (UMR 106). FEBS Lett. 251:17–21; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Eilam, Y.; Beit-Or, A.; Nevo, Z. Decrease in cytosolic Ca++ and enhanced proteoglycan derived growth factors in cultured chondrocytes. Biochem Biophys Res Comm, 132:770–779; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Eilam, Y.; Beit-Or, A.; Nevo, Z. Cytosolic free Ca++ as a signal for proteoglycan synthesis and cell proliferation in cultured chondrocytes. In Horowitz, S.; Sela, I., eds. Current Advances in Skeletogenesis III. Jerusalem, Israel: Heiliger, 1987:127–139.

    Google Scholar 

  • Endo, M.; Tanaka, M.; Ogawa, Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibers. Nature. 228:34–36; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Fabiato, A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 85:291–320; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Frank, E.H.; Grodzinsky, A.J. Cartilage electromechanics — II. A continuum model of cartilage electrokinetics and correlation with experiments. J Biomechanics. 20:629–639; 1987.

    Article  CAS  Google Scholar 

  • Gilkey, J.C.; Jaffe, L.F.; Ridgeway, E.B.; Reynolds, G.T. A free calcium wave traverses the activating egg of the medaka, Orvzias latipes. J Cell Biol. 76:448–466; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont, P.; Machesky, L.M.; Baldassare, J.J.; Pollard T.D.: The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science Wash DC, 247:1575–1578; 1990.

    Article  CAS  Google Scholar 

  • Goligorsky, M.S. Mechanical stimulation induces Ca2+ i transients and membrane depolarization in cultured endothelial cells: Effects on Ca2+ i in co-perfused smooth muscle cells. FEBS Lett. 240:59–64; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M.L.; Pizzanelli, A.M.; Grodzinsky, A.J.; Lee R.C. Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. J Orthop Res. 6:777–792; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M.L.; Pizzanelli, A.M.; Lee R.C; Grodzinsky, A.J.; Swann, D.A. Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim Biophys Acta. 991:415–425; 1989.

    PubMed  CAS  Google Scholar 

  • Guharay, F.; Sachs, F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol Lond. 352:685–701, 1984.

    PubMed  CAS  Google Scholar 

  • Guilak, F.; Bachrach, N.M. Compression-induced changes in chondrocyte shape and volume determined in situ using confocal microscopy. Trans Orthop Res Soc. 18:619; 1993.

    Google Scholar 

  • Guilak, F.; Donahue, HJ.; Grande, D.A.; Zell, R.A.; McLeod, K.J.; Rubin, C.T. unpublished results, 1994a.

    Google Scholar 

  • Guilak, F.; Meyer, B.C.; Ratcliffe, A.; Mow, V.C. Quantification of the effects of matrix compression on proteoglycan metabolism in articular cartilage expiants. Osteoarthritis Cart, in press, 1994b.

    Google Scholar 

  • Guilak, F.; Ratcliffe, A.; Mow, V.C. Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study. J Orthop Res, submitted, 1994c.

    Google Scholar 

  • Gupta, A.; Martin, K.J.; Miyauchi, A.; Hruska, K.A. Regulation of cytosolic calcium by parathyroid hormone and oscillations of cytosolic calcium in fibroblasts from normal and pseudohypoparathyroid patients. Endocrinology. 128:2825–2836; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A.C.; Urban, J.P.G.; Gehl, K.A. The effects of hydrostatic pressure on matrix biosynthesis in articular cartilage. J Orthop Res. 9:1–10; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Helminen, H.J.; Jurvelin, J.; Kiviranta, I.; Paukkonen, K.; Saamanen, A-M.; Tammi, M. Joint loading effects on articular cartilage: A historical review. In: Helminen H.J.; Kiviranta I.; Tammi, M.; Saamanen, A-M; Paukkonen, K.; Jurvelin, J. eds. Bristol, England: Wright and Sons, 1987:1–46.

    Google Scholar 

  • Helminen, H.J.; Kiviranta, I.; Saamanen, A-M.; Jurvelin, J.S.; Arokoski, J.; Oettmeier, R.; Abendroth, K.; Roth, A.J.; Tammi, M. Effect of motion and load on articular cartilage in animal models. In: Kuettner, K.E.; Schleyerbach, R.; Peyron, J.C.; Hascall, V.C., eds. Articular Cartilage and Osteoarthritis. 1992:501–510.

    Google Scholar 

  • Hille, B. Ionic channels of excitable membranes.Sunderland Massachusetts: Sinauer Associates, 1992.

    Google Scholar 

  • Howell, D.S.; Treadwell, B.V.; Trippel, S.B.: Etiopathogenesis of osteoarthritis. In R.W. Moskowitz, R.W.; Howell, D.S.; Goldberg, V.M.; Mankin, H.J., eds. Osteoarthritis: diagnosis and medical/ surgical management, 2nd ed., Philadelphia PA: W.B. Saunders, 1992:233–252.

    Google Scholar 

  • Iannotti, J.P.; Mechanism of action of parathyroid hormone-induced proteoglycan synthesis in the growth plate chondrocyte. J Orthop Res. 8:136–145; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Iannotti, J.P.; Naidu, S.; Noguchi, Y.; Hunt, R.M.; Brighton, C.T. Calcium induced matrix vesicle biogenesis. Trans Orthop Res Soc. 14:125; 1989.

    Google Scholar 

  • Ingber, D. Integrins as mechanochemical transducers. Curr Opin Cell Biol. 3:841–848; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, L.F. Classes and mechanisms of calcium waves. Cell Calcium. 14:736–745; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D.B.; Bingmann, D. How do osteoblasts respond to mechanical stimulation? Cells and Materials 1:329–340; 1991.

    CAS  Google Scholar 

  • Jones, I.L.; Klamfeldt, A.; Sanstrom, T. The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro. Clin Orthop Rel Res. 165:283–289; 1982.

    CAS  Google Scholar 

  • Jorgensen, F.; Ohmori, H. Amiloride blocks the mechano-electrical transduction channels of hair cells of the chick. J Physiol. 403:577–578; 1988.

    PubMed  CAS  Google Scholar 

  • Lai, W.M.; Hou, J.S.; Mow, V.C. A triphasic theory for the swelling and deformational behaviors of articular cartilage. J Biomech Engng. 113:187–197; 1991.

    Article  Google Scholar 

  • Lane, J.W.; McBride, D.W.; Hamill, O.P. Structure-activity relations of amiloride and its analogues in blocking the mechanosensitive channel in Xenopus oocytes. Br J Pharmacol. 106:283–286; 1992.

    PubMed  CAS  Google Scholar 

  • Lane, J.W.; McBride, D.W.; Hamill, O.P. Ionic effects on amiloride block of the mechanosensitive channel in Xenopus oocytes. Br J Pharmacol. 108:116–119; 1993.

    PubMed  CAS  Google Scholar 

  • Maroudas, A. Physicochemical properties of articular cartilage. In: Freeman, M.A.R., ed. Adult Articular Cartilage. Tunbridge Wells, England: Pitman Medical. p215–290; 1979.

    Google Scholar 

  • Meyer, T.; Stryer, L. Calcium spiking. Annu Rev Biophys Chem. 20:153–174; 1991.

    Article  CAS  Google Scholar 

  • Morris, C.E. Mechanosensitive ion channels. J Membrane Biol. 113:93–107; 1990.

    Article  CAS  Google Scholar 

  • Moskowitz, R.W. Experimental models of osteoarthritis. In Moskowitz, R.W.; Howell, D.S.; Goldberg, V.M.; Mankin, H.J., eds. Osteoarthritis: diagnosis and medical/ surgical management, 2nd ed., Philadelphia PA: W.B. Saunders, 1992:213–232.

    Google Scholar 

  • Mow, V.C.; Bachrach, N.M.; Setton, L.A.; Guilak, F. Stress, strain, pressure and flow fields in articular cartilage and chondrocytes. In Mow, V.C.; Guilak, F.; Tran-Son-Tay, R.; Hochmuth, R.M. eds. Cell Mechanics and Cellular Engineering. New York: Springer Verlag, in press, 1994.

    Google Scholar 

  • Mow, V.C.; Ratcliffe, A.; Poole, A.R. Cartilage and diarthrodial joints as paradigms for heirarchial materials and structures. Biomaterials. 13:67–97; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Nevo, Z.; Beit-Or, A.; Eilam, Y. Slowing down aging of cultured embryonal chondrocytes by maintenance under lowered oxygen tension. Mech Aging Dev. 45:157–165; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Parkkinen, J.; Ikonen, J.; Lammi, M.J.; Laakkonen, J.; Tammi, M.; Helminen H.J. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in culture chondrocytes and articular cartilage expiants. Arch Biochem Biophys. 300:458–465; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, H. The calcium messenger system. New Eng J Med. 17:1094–1170; 1986.

    Google Scholar 

  • Rosier, R.N. The role of intracellular calcium in matrix vesicle biogenesis. Orthop Trans. 8:238; 1984.

    Google Scholar 

  • Sachs, F. Mechanical transduction in biological systems. CRC Crit Rev Biomed Eng, 16:141–169; 1988.

    CAS  Google Scholar 

  • Sachs, F. Mechanical transduction by membrane ion channels: a mini review. Molecular Cell Biochem 104: 57–60; 1991.

    CAS  Google Scholar 

  • Sah, R.L.Y.; Kim, Y.J.; Doong, J.Y.H.; Grodzinsky, A.J.; Plaas, A.H.K.; Sandy, J.D. Biosynthetic response of cartilage expiants to dynamic compression. J Orthop Res, 7:619–636; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, M.J.; Charles, A.C.; Dirksen, E.R. Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regulation 1:585–596; 1990.

    PubMed  CAS  Google Scholar 

  • Sanderson, M.J.; Chow, I.; Dirksen, E.R. Intercellular communication between ciliated cells in culture. Am J Physiol. 254:C63-C74; 1986.

    Google Scholar 

  • Schliwa, M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 92:79–91; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Schneiderman, R.; Keret, D.; Maroudas, A. Effects of mechanical and osmotic pressure on the fate of glycosaminoglycan synthesis in the human adult femoral head cartilage: an in vitro study. J Orthop Res, 4:393; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Sigurdson, W.J.; Sachs, F.; Diamond, S.L. Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am J Physiol. 264:H1745-H1752; 1993.

    PubMed  CAS  Google Scholar 

  • Stockwell, R.A. Biology of cartilage cells. Cambridge, England: Cambridge University Press; 1979.

    Google Scholar 

  • Tammi, M.; Paukkonen, K.; Kiviranta, I.; Jurvelin, J.; Saamanen, A-M.; Helminen, H.J. Joint induced alteration in articular cartilage. In Helminen H.J.; Kiviranta I.; Tammi, M.; Saamanen, A-M; Paukkonen, K.; Jurvelin, J. eds. Bristol, England: Wright and Sons, 1987:64–88.

    Google Scholar 

  • Vandenburgh, H.H. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol. 262:R350–355; 1992.

    PubMed  CAS  Google Scholar 

  • Xia, S.L.; Ferrier J. Propagation of a calcium pulse between osteoblastic cells. Biochem Biophys Res Comm 186:1212–1219; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Yahara, I.; Harada, F.; Setsuko, S.; Yoshihira, K; Natori, S. Correlation between effects of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro. J Cell Biol. 92:69–78; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.C.; Sachs, F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science Wash DC. 243:1068–1071; 1989.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Guilak, F., Donahue, H.J., Zell, R.A., Grande, D., McLeod, K.J., Rubin, C.T. (1994). Deformation-Induced Calcium Signaling in Articular Chondrocytes. In: Mow, V.C., Tran-Son-Tay, R., Guilak, F., Hochmuth, R.M. (eds) Cell Mechanics and Cellular Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8425-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8425-0_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8427-4

  • Online ISBN: 978-1-4613-8425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics