Skip to main content

Stress, Strain, Pressure and Flow Fields in Articular Cartilage and Chondrocytes

  • Chapter
Cell Mechanics and Cellular Engineering

Abstract

Articular cartilage serves as the load-bearing material of joints, with excellent friction, lubrication and wear characteristics (Mow et al. 1992a). Under normal physiological conditions, these essential biomechanical functions are provided with little or no degenerative changes over the lifetime of a human joint. However, biomechanical factors such as excessively high impact loads, repetitively applied loads, joint immobilization and instability, and abnormal range of motion can alter the composition, structure and material properties of articular cartilage (e.g., Armstrong et al. 1985; Caterson and Lowther 1978; Donohue et al. 1983; Helminen et al. 1987; Palmoski et al. 1979–1981; Vener et al. 1992). These changes in the biochemical composition and material properties are due, in part, to the alterations in the metabolic activities of the chondrocytes attempting to remodel articular cartilage in an effort to adapt to their new biomechanical environment (e.g., Helminen et al. 1987; Howell et al. 1992; Stockwell 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akizuki, S.; Mow, V.C.; Muller, F.; Pita, J.C.; Howell, D.S.; Manicourt, D.H. Tensile properties of knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J. Orthop. Res. 4:379–392; 1986.

    PubMed  CAS  Google Scholar 

  • Armstrong, C.G.; Lai, W.M.; Mow V.C. An analysis of the unconfined compression of articular cartilage. J. Biomech. Engng. 106:165–173; 1984.

    CAS  Google Scholar 

  • Armstrong, C.G.; Mow, V.C. Variations in the intrinsic mechanical properties of human cartilage with age, degeneration and water content. J. Bone Joint Surg. 64A:88–94; 1982.

    Google Scholar 

  • Armstrong, C.G.; Mow, V.C; Wirth C.R. Biomechanics of impact-induced microdamage to articular cartilage--A possible genesis for chondromalacia patella. In: Finerman G. ed. AAOS Symposium on Sports Medicine: The Knee. St. Louis: CV Mosby Co.; 1985:p. 70–84.

    Google Scholar 

  • Ateshian, G.A.; Lai, W.M.; Zhu, W.B.; Mow, V.C. An asymptotic solution for two contacting biphasic cartilage layers. J. Biomechanics, In Press, 1994.

    Google Scholar 

  • Athanasiou, K.A.; Rosenwasser, M.P.; Buckwalter, J.A.; Malinin, T.I.; Mow, V.C. Interspecies comparison of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9:330–340; 1991.

    PubMed  CAS  Google Scholar 

  • Aydelotte, M.B.; Greenhill, R.R.; Kuettner, K.E. Differences between sub-populations of chondrocytes. II. Proteoglycan metabolism. Conn. Tiss. Res. 18:223–234; 1988.

    CAS  Google Scholar 

  • Bachrach, N.M.; Warden, W.H.; Chorney, G.S.; Ratcliffe, A.; Mow, V.C. A method for quantitative 3-D analysis of chondrocyte morphology using laser scanning confocal microscopy. In: Tarbell, J.M., ed. Advances in Bioengineering. New York: ASME; 1993: BED26:23–26.

    Google Scholar 

  • Ben-Ze’ev, A. Animal cell shape changes and gene expression. BioEssays. 13:207–212; 1991.

    PubMed  Google Scholar 

  • Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Physics. 12:155–164; 1941.

    Google Scholar 

  • Bowen, R.M. Theory of mixture. In: Eringen, A.E., ed. Continnum Physics. New York: Academic Press; 1976: V3:1–127.

    Google Scholar 

  • Brakenhoff, G.A.; Van Spronsen, E.A.; Van Der Voort, H.T.M.; Nanninga, N. Three-dimensional confocal fluorescence microscopy. Methods Cell Biol. 30:379–98; 1989.

    PubMed  CAS  Google Scholar 

  • Broom, N.D.; Myers D.B. A study of the structural response of wet hyaline cartilage to various loading conditions. Conn. Tiss. Res. 7:227–237; 1980.

    CAS  Google Scholar 

  • Broom, N.D.; Poole, A.C. Articular cartilage collagen and proteoglycans. Arthritis Rheum. 23:1111–1119; 1983.

    Google Scholar 

  • Buckwalter, J.A.; Rosenberg, L.C. Electron microscopic studies of cartilage proteoglycans. J. Biol. Chem. 257:9830–9839; 1982.

    PubMed  CAS  Google Scholar 

  • Bullough, P.G.; Goodfellow, J. The significance of the fine structure of articular cartilage. J. Bone Joint Surg. 50B:852–857; 1968.

    Google Scholar 

  • Burton-Wurster, N.; Vernier-Singer, M.; Farquhar, T.; Lust, G. Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J. Orthop. Res. 11:717–729; 1993.

    PubMed  CAS  Google Scholar 

  • Caterson, B.; Lowther, D.A. Changes in the metabolism of the proteoglycans from sheep cartilage in response to mechanical stress. Biochim. Biophys. Acta. 540:412–422; 1978.

    CAS  Google Scholar 

  • Clark, J.M. The organization of collagen in cryofractured rabbit articular cartilage: A scanning electron microscopic study. J. Orthop. Res. 3:17–29; 1985.

    PubMed  CAS  Google Scholar 

  • Clarke, I.C.; Articular cartilage: A review and scanning electron microscope study--l. The interterritorial fibrillar architecture. J. Bone Joint Surg. 53B:732–750; 1971.

    Google Scholar 

  • Copray, J.V.C.M.; Jansen, H.W.B.; Duterloo, H.S. An in vitro system for studying the effect of variable compressive forces on the mandibular condylar cartilage of the rat. Arch. Oral Biol. 30(4):299–304; 1985.

    PubMed  CAS  Google Scholar 

  • Crane, R.E.; Green, A.E.; Naghdi, P.M. A mixture of viscous elastic materials with different constituent temperatures. Quart. J. Mech. Appl. Math. 23:171–184; 1970.

    Google Scholar 

  • Dong, C; Skalak, R.; Sung, K-L.P.; Schmid-Schonbein, G.W.; Chien, S. Passive deformation analysis of human leukocytes. J. Biomech. Engng. 110:27–36; 1988.

    CAS  Google Scholar 

  • Donohue, J.M.; Buss, D.; Oegema, T.R.; Thompson, R.C. The effects of indirect blunt trauma on adult canine articular cartilage. J. Bone Joint Surg., 65A:948–957, 1983.

    Google Scholar 

  • Dowson, D.; Unsworth, A.; Cooke, A.F.; Gvozdanovic, D. Lubrication of joints. In: Dowson, D; Wright, V., eds. An introduction to the biomechanics of joints and joint replacement. London: Inst. Mech. Eng.; 1981:p. 120–145.

    Google Scholar 

  • Edwards, J. Physical characteristics of articular cartilage. Proc. Inst. Mech. Eng. 181:16–24; 1967.

    Google Scholar 

  • Eisenberg, S.R.; Grodzinsky, A.J. Swelling of articular cartilage and other connective tissues: Electromechanochemical forces. J. Orthop. Res. 3:148–159; 1985.

    PubMed  CAS  Google Scholar 

  • Eyre, D.R. Structure and function of the cartilage collagens: Role of type IX in articular cartilage. In: Brandt, K.D., ed. Cartilage Changes in Osteoarthritis. Indianapolis: Ciba-Geigy; 1990;p. 12–16.

    Google Scholar 

  • Frank, E.H.; Grodzinsky, A.J. Cartilage electromechanics — II. A continuum model of cartilage electrokinetics and correlation with experiments. J. Biomechanics. 20:629–639; 1987.

    CAS  Google Scholar 

  • Getzenberg, R.H.; Pienta, K.J.; Coffey, D.S. The tissue matrix: Cell dynamics and hormone action. Endocrine Rev. 11(3):399–417; 1990.

    CAS  Google Scholar 

  • Gore, D.M.; Higginson, G.R.; Minns, R.J. Compliance of articular cartilage and its variation through the thickness. Phys. Med. Biol. 28:233–247; 1983.

    PubMed  CAS  Google Scholar 

  • Gray, M.L.; Pizzanelli, A.M.; Grodzinsky, A.J.; Lee, R.C. Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6:777–792; 1988.

    PubMed  CAS  Google Scholar 

  • Gray, M.L.; Pizzanelli, A.M.; Lee, R.C; Grodzinsky, A.J.; Swann, D.A. Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim. Biophys. Acta. 991:415–425; 1989.

    PubMed  CAS  Google Scholar 

  • Gu, W.Y.; Lai, W.M.; Mow, V.C. Analysis of fluid and ion transport through a porous charged-hydrated biological tissue during a permeation experiment. In: Salamon, N.J.; Sullivan, R.M., eds. Computational Mechanics of Porous Materials. New York: ASME; 1992:AMD136:29–41.

    Google Scholar 

  • Gu, W.Y.; Lai, W.M.; Mow, V.C. Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J. Biomechanics. 26:709–723; 1993.

    CAS  Google Scholar 

  • Guilak, F. Volume and surface area measurement of viable chondrocytes in situations using geometric modeling of serial confocal sections. J. Microscopy; 1994a. In Press.

    Google Scholar 

  • Guilak, F.; Donahue, H.J.; Zell, R.; Grande, D.; McLeod, K.J.; Rubin, C.T. Deformation-induced calcium signaling in articular chondrocytes. In: Mow, V.C; Hochmuth, R.M.; Guilak, F.; Trans-Son-Tray, R., eds. Cell Mechanics and Cellular Engineering. New York: 1994b, In Press.

    Google Scholar 

  • Guilak, F.; Hou, J.S.; Ratcliffe, A.; Mow, V.C. Articular cartilage under hydrostatic loading. In: Advances in Bioengineering. New York: ASME; 1988: BED15:183–186.

    Google Scholar 

  • Guilak, F. Mow, V.C. Determination of the mechanical response of the chondrocyte in situ using confocal microscopy and finite element analysis. In: Advances in Bioengineering. New York: ASME; 1992: BED22:21–23.

    Google Scholar 

  • Guilak, F.; Myers, B.C.; Ratcliffe, A.; Mow, V.C. The effect of static loading on proteoglycan metabolism in articular cartilage expiants. Osteoarthritis and Cartilage, In Press, 1994c.

    Google Scholar 

  • Guilak, F.; Ratcliffe, A.; Lane, N.; Rosenwasser, M.P.; Mow, V.C. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis, J. Orthop. Res. In Press, 1994d.

    Google Scholar 

  • Guilak, F.; Ratcliffe, A.; Mow V.C. The stress-strain environment around a chondrocyte: A finite element analysis of cell matrix interactions. In: Goldstein, S. A., ed. Advances in Bioengineering. New York: ASME; 1990a: BED17:395–398.

    Google Scholar 

  • Guilak, F.; Ratcliffe, A.; Mow, V.C. Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study. J. Orthop. Res. In Review, 1994e.

    Google Scholar 

  • Guilak, F.; Spilker, R.L.; Mow V.C. A finite element model of cartilage extracellular matrix response to static and cyclic compressive loading. In: Goldstein, S. A., ed. Advances in Bioengineering. New York: ASME; 1990b: BED 17:225–228.

    Google Scholar 

  • Hall, A.C.; Urban, J.P.G. Responses of articular chondrocytes and cartilage to high hydrostatic pressure. Trans. Orthop. Res. Soc. 14:49; 1989.

    Google Scholar 

  • Hall, A.C.; Urban, J.P.G.; Gehl, K.A. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J. Orthop. Res. 9:1–10; 1991.

    PubMed  CAS  Google Scholar 

  • Hayes, W.C.; Bodine, A.J. Flow-independent viscoelastic properties of articular cartilage matrix. J. Biomechanics. 11:407–420; 1978.

    CAS  Google Scholar 

  • Hayes, W.C.; Mockros, L.F. Viscoelastic properties of human articular cartilage. J. Appl. Physiol. 31:562–568; 1971.

    PubMed  CAS  Google Scholar 

  • Helminen, H.J.; Jurvelin, J.; Kiviranta, I.; Paukkonen, K.; Saamanen, A-M.; Tammi, M. Joint loading effects on articular cartilage: A historical review. In: Joint loading. Helminen, H.J.; Kiviranta, I.; Tammi, M.; Saamanen, A-M.; Paukkonen, K.; Jurvelin, J., eds. Bristol, England: Wright; 1987:p.1–46.

    Google Scholar 

  • Helminen, H.J.; Kiviranta, I.; Saamanen, A-M.; Jurvelin, J.S.; Arokoski, J.; Oettmeier, R.; Abendroth, K.; Roth, A.J.; Tammi, M. Effect of motion and load on articular cartilage in animal models. In: Kuettner, K.E.; Schleyerbach, R.; Peyron, J.C.; Hascall, V.C, eds. Articular cartilage and osteoarthritis. New York: Raven Press; 1992:p.501–510.

    Google Scholar 

  • Holmes, H.; Hou J.S.; Mow, V.C. The energy dissipation mechanism in articular cartilage at low frequencies. In: Spilker, R.L., ed. Advances in Bioengineering. New York: ASME; 1984:41–42.

    Google Scholar 

  • Holmes, M.H.; Mow, V.C. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomechanics. 23:1145–1156; 1990.

    CAS  Google Scholar 

  • Holmes, M.H.; Lai, W.M.; Mow V.C. Singular perturbation analysis of the nonlinear, flow-dependent, compressive stress-relaxation behavior of articular cartilage. J. Biomech. Engng. 107:206–218; 1985.

    CAS  Google Scholar 

  • Horoyan, M.; Benoliel, A.M.; Capo, C; Bongrand, P. Localization of calcium and microfilament changes in mechanically stressed cells. Cell Biophys. 17:243–256; 1990.

    PubMed  CAS  Google Scholar 

  • Hou, J.S.; Lai, W.M.; Holmes, M.H.; Mow, V.C. Squeeze film lubrication for articular cartilage with synovial fluid. In: Mow, V.C; Ratcliffe, A.; Woo, S.L-Y., eds. Biomechanics of diarthrodial joints, Vol II. New York: Springer-Verlag; 1990:p.347–368.

    Google Scholar 

  • Howell, D.S.; Treadwell, B.V.; Trippel, S.B. Etiopathogenesis of osteoarthritis. In: Moskowitz, R.W.; Howell, D.S.; Goldberg, V.M.; Mankin, H.J., eds. Osteoarthritis: Diagnosis and medical/surgical management. 2nd edition. Philadelphia: W.B.Saunders Co.; 1992:p.233–255.

    Google Scholar 

  • Hunziker, E.B.; Schenk, R.K. Structural organization of proteoglycans. In: Wight, T.W.; Mecham, R.P., eds. Biology of Proteoglycans. Academic Press; 1987:p. 155–183.

    Google Scholar 

  • Ingber, D. Integrins as mechanochemical transducers. Curr. Opin. Cell. Biol. 3:841–848; 1991.

    CAS  Google Scholar 

  • Jin, Z.M.; Dowson, D.; Fisher, J. The effect of porosity of articular cartilage on the lubrication of a normal human hip joint. J. Eng. Med. 206:117–124; 1992.

    CAS  Google Scholar 

  • Jones, I.L.; Klamfeldt, A.; Sanstrom, T. The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro. Clin. Orthop. Rel. Res. 165:283–289; 1982.

    CAS  Google Scholar 

  • Jurvelin, J.; Kiviranta, I.; Saammanen, A-M; Tammi, M.; Helminen, H.J. Partial restoration of immobilization-induced softening of canine articular cartilage after remobilization of the knee joint. J. Orthop. Res. 7:352–358; 1989.

    PubMed  CAS  Google Scholar 

  • Kaye, C.F.; Lippiello, L.; Mankin, H.; Numata, T. Evidence of pressure sensitive stimulus receptor system in articular cartilage. Trans. Orthop. Res. Soc. 5:1; 1980.

    Google Scholar 

  • Kempson, G.E.; Muir, H.; Pollard, C; Tuke, M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim. Biophys. Acta. 297:456–472; 1973.

    PubMed  CAS  Google Scholar 

  • Kempson, G.E.; Spivey, C.J.; Swanson, S.A.V.; Freeman, M.A.R. Patterns of cartilage stiffness on normal and degenerate femoral heads. J. Biomechanics. 4:597–609; 1971.

    CAS  Google Scholar 

  • Kimura, J.H.; Schipplein, O.D.; Kuettner, K.E.; Andriacchi, T.P. Effects of hydrostatic loading on extracellular matrix formation. Trans. Orthop. Res. Soc. 16:53; 1991.

    Google Scholar 

  • Kiviranta, I.; Jurvelin, J.; Tammi, M.; Saamanen, A-M; Helminen, H.J. Weight-bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joint of young Beagle dogs. Arthritis Rheum. 30:801–809; 1987.

    PubMed  CAS  Google Scholar 

  • Lai, W.M.; Hou, J.S.; Mow, V.C. A triphasic theory for the swelling and deformational behaviors of articular cartilage. J. Biomech. Engng. 113:245–258; 1991

    CAS  Google Scholar 

  • Lai, W.M.; Mow, V.C. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology. 17:111–123; 1980.

    PubMed  CAS  Google Scholar 

  • Lai, W.M.; Mow, V.C; Roth, V. Effects of a nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Engng. 103:61–66; 1981.

    CAS  Google Scholar 

  • Larsson, T.; Aspden, R.M.; Heinegard. Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix. 11:388–394; 1991.

    PubMed  CAS  Google Scholar 

  • Linn, F.C; Sokoloff, L. Movement and composition of interstitial fluid of cartilage. Arthritis Rheum. 8:481–494; 1965.

    PubMed  CAS  Google Scholar 

  • Lippiello, L.; Kaye, C.F.; Neumata, T.; Mankin, H.J. In vitro metabolic response of articular cartilage segments to low levels of hydrostatic pressure. Connect. Tiss. Res. 13:99–107; 1985.

    CAS  Google Scholar 

  • Mak, A.F.; Lai, W.M.; Mow, V.C Biphasic indentation of articular cartilage—I: Theoretical analysis. J. Biomechanics. 20:703–714; 1987.

    CAS  Google Scholar 

  • Mankin, H.J.; Brandt, K.D.; Biochemistry and metabolism of cartilage in osteoarthritis. In: Moskowitz, R.W.; Howell, D.S.; Goldberg, V.M.; Mankin, H.J., eds. Osteoarthritis: Diagnosis and medical/surgical management. 2nd edition. Philadelphia: W.B. Saunders Co.; 1992:p. 109–154.

    Google Scholar 

  • Maroudas, A. Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature. 260:808–809; 1976.

    PubMed  CAS  Google Scholar 

  • Maroudas, A. Physicochemical properties of articular cartilage. In: Freeman, M.A.R., ed. Adult Articular Cartilage. Tunbridge Wells, England: Pitman Medical; 1979:p.215–290.

    Google Scholar 

  • Maroudas, A. Physicochemical properties of cartilage in the light of ion-exchange theory. Biophys. J. 8:575–595; 1968.

    PubMed  CAS  Google Scholar 

  • Mansour, J.M.; Mow, V.C. The permeability of articular cartilage under compressive strain and at high pressures. J. Bone Joint Surg. 58A:509–516; 1976.

    Google Scholar 

  • McCarty, N.A.; O’Neil, R.G. Calcium signaling in cell volume regulation. Physiol. Rev. 72:1037–1061; 1992.

    PubMed  CAS  Google Scholar 

  • Morales, T.I. Polypeptide regulators of matrix homeostasis in articular cartilage. In: Kuettner, K.E.; Schleyerbach, R.; Peyron, J.C; Hascall, V.C., eds. Articular cartilage and osteoarthritis. New York: Raven Press; 1992:p.265–279.

    Google Scholar 

  • Moskowitz, R.W. Experimental models of osteoarthritis. In: Moskowitz, R.W.; Howell, D.S.; Goldberg, V.M.; Mankin, H.J., eds. Osteoarthritis: diagnosis and medical/surgical management. 2nd edition. Philadelphia: W.B. Saunders Co.; 1992:p.213–232.

    Google Scholar 

  • Mow, V.C.; Ateshian, G.A.; Ratcliffe, A. Anatomic form and biomechanical properties of articular cartilage of the knee joint. In: Finerman, G.A.M.; Noyes, F.R., eds. Biology and Biomechanics of the Traumatized Synovial Joint: The Knee as a Model. American Academy of Orthopaedic Surgeons Symposium. 1992b:p.55–81

    Google Scholar 

  • Mow, V.C.; Gibbs, M.C.; Lai, W.M.; Zhu, W.; Athanasiou, K.A. Biphasic indentation of articular cartilage—II. A Numerical algorithm and an experimental study. J. Biomechanics. 22:853–861; 1989.

    CAS  Google Scholar 

  • Mow, V.C; Guilak, F.; Deformation of chondrocytes within the extracellular matrix of articular cartilage. In: Bell, E., ed. Tissue Engineering. Boston: Birkhauser; 1993:p. 128–146.

    Google Scholar 

  • Mow, V.C; Holmes, M.H.; Lai, W.M. Fluid transport and mechanical properties of articular cartilage. J. Biomechanics. 17:377–394; 1984.

    CAS  Google Scholar 

  • Mow V.C; Hou, J.S.; Owens, J.M.; Ratcliffe, A. Biphasic and quasi-linear viscoelastic theories for hydrated soft tissues. In: Mow, V.C; Ratcliffe, A.; Woo, S.L-Y., eds. Biomechanics of diarthrodial joints, I. New York: Springer-Verlag; 1990:p.215–260.

    Google Scholar 

  • Mow, V.C.; Kuei, S.C.; Lai, W.M.; Armstrong, CG. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Engng. 102:73–84; 1980.

    CAS  Google Scholar 

  • Mow, V.C.; Kwan, M.K.; Lai, W.M.; Holmes, M.H. A finite deformation theory for nonlinearly permeable soft hydrated biological tissues. In: Woo, S.L-Y.; Schmid-Schonbein, G.W.; Zweifach, B., eds. Frontiers in biomechanics. New York: Springer-Verlag; 1986:p. 153–179.

    Google Scholar 

  • Mow, V.C.; Ratcliffe, A.; Poole, A.R. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 13:67–97; 1992a.

    PubMed  CAS  Google Scholar 

  • Muir, H. Molecular approach to understanding of osteoarthrosis. Ann. Rheum. Dis. 36:199–208; 1977.

    PubMed  CAS  Google Scholar 

  • Muir, H. Proteoglycans as organizers of the extracellular matrix. Biochem. Soc. Trans. 11:613–622; 1983.

    PubMed  CAS  Google Scholar 

  • Muir, H.; Bullough, P.; Maroudas, A. The distribution of collagen in human articular cartilage with some of its physiological implications. J. Bone Joint Surg. 52B:554–563; 1970.

    Google Scholar 

  • Myers, E.R.; Lai, W.M.; Mow, V.C. A continuum theory and an experiment for the ion-induced swelling behavior of articular cartilage. J. Biomech. Engng. 106:151–158; 1984.

    CAS  Google Scholar 

  • Ogden, J.A. The development and growth of the musculoskeletal system. In: Albright, J.A.; Brand, R.A. The scientific basis of orthopaedics. New York: Appleton-Century-Crofts; 1979; p.41–103.

    Google Scholar 

  • Palmoski, M.J.; Perricone, E.; Brandt, K.D. Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheum. 22:508–517; 1979.

    PubMed  CAS  Google Scholar 

  • Palmoski, M.J.; Colver, R.A.; Brandt, K.D. Joint motion in the absence of normal loading does not maintain normal articular cartilage. Arthritis Rheum. 23:325–334; 1980.

    PubMed  CAS  Google Scholar 

  • Palmoski, M.J.; Brandt, K.D. Running inhibits reversal of atrophic changes in canine knee cartilage after removal of a leg cast. Arth Rheum 24:1329–1337; 1981.

    CAS  Google Scholar 

  • Palmoski, M.J.; Brandt, K.D. Immobilization of the knee prevents osteoarthritis after anterior cruciate ligament section. Arthritis Rheum. 25:1201–1208; 1982.

    PubMed  CAS  Google Scholar 

  • Palmoski, M.J.; Brandt, K.D. Effect of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum. 27:675–681; 1984.

    PubMed  CAS  Google Scholar 

  • Parkkinen, J.; Ikonen, J.; Lammi, M.J.; Laakkonen, J.; Tammi, M.; Helminen, H.J. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in culture chondrocytes and articular cartilage expiants. Arch. Biochem. Biophys. 300:458–465; 1993a.

    PubMed  CAS  Google Scholar 

  • Parkkinen, J.; Lammi, M.J.; Helminen, H.J.; Tammi, M. Local stimulation of proteoglycan synthesis in articular cartilage expiants by dynamic compression in vitro. J. Orthop. Res. 10:610–620; 1992.

    PubMed  CAS  Google Scholar 

  • Parkkinen, J.; Lammi, M.J.; Pelttari, A.; Helminen, H.J.; Tammi M.; Virtanen, I. Altered Golgi apparatus in hydrostatically loaded articular cartilage chondrocytes. Ann. Rheum. Dis. 52:192–198; 1993b.

    PubMed  CAS  Google Scholar 

  • Pawley, J. Fundamental limits in confocal microscopy. In: Pawley, J.B., ed. Handbook of Biological Confocal Microscopy. New York: Plenum Press; 1990.

    Google Scholar 

  • Pierce, S.K.; Politis, A.D. Ca2+-activated cell volume recovery mechanisms. Ann. Rev. Physiol. 52:27–42; 1990.

    CAS  Google Scholar 

  • Ratcliffe, A.; Shurety, W.; Caterson, B. The quantitation of a native chondroitin sulfate epitope in synovial fluid and articular cartilage from canine experimental osteoarthritis and disuse atrophy. Arthritis Rheum. 36:543–551; 1993.

    PubMed  CAS  Google Scholar 

  • Ratcliffe, A.; Beauvais, P.J.; Saed-Nejad, F. Differential levels of aggrecan aggregate components in synovial fluids from canine knee joints with experimental osteoarthritis and disuse. J. Orthop. Res. In Press, 1994.

    Google Scholar 

  • Roth, V.; Mow, V.C. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J. Bone Joint Surg. 62A:1102–1117; 1980.

    Google Scholar 

  • Sachs, F. Mechanical transduction by membrane ion channels: A mini review. Molecular Cell Biochem. 104:57–60; 1991.

    CAS  Google Scholar 

  • Sah, R.L.Y.; Kim, Y.J.; Doong J-Y.H.; Grodzinsky, A.J.; Plaas, A.H.K.; Sandy, J.D. Biosynthetic response of cartilage expiants to dynamic compression. J. Orthop. Res. 7:619–636; 1989.

    PubMed  CAS  Google Scholar 

  • Sah, R.L.Y; Doong J-Y.H.; Grodzinsky, A.J. Plaas, A.H.K; Sandy J.D. Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage expiants. Arch. Biochem. Biophys. 286: 20–29; 1991.

    PubMed  CAS  Google Scholar 

  • Sarkadi, B.; Parker, J.C. Activation of ion transport pathways by changes in cell volume. Biochim. Biophys. Acta. 1071:407–27; 1991.

    PubMed  CAS  Google Scholar 

  • Schneiderman, R.; Keret, D.; Maroudas, A. Effects of mechanical and osmotic pressure on the rate of GAG synthesis in the human adult femoral head cartilage: An in vitro study. J. Orthop. Res. 4:393–408; 1986.

    PubMed  CAS  Google Scholar 

  • Schmidt, M.; Mow, V.C.; Chun, L.E.; Eyre, D.R. Effects of proteoglycan extraction on the tensile behavior of articular cartilage. J. Orthop. Res. 8:353–363; 1990.

    PubMed  CAS  Google Scholar 

  • Setton, L.A.; Gu, W.Y.; Saed-Nejad, F.; Lai, W.M.; Mow, V.C. Swelling-induced pre-stress in articular cartilage and its physiological implications. Trans. Orthop. Res. Soc. 18:282; 1993a.

    Google Scholar 

  • Setton, L.A.; Gu, W.Y.; Muller, F.J.; Pita, J.C; Mow, V.C. Changes in the intrinsic shear behavior of articular cartilage with joint disuse. Trans. Orth. Res. Soc. 17:209; 1992a.

    Google Scholar 

  • Setton, L.A.; Mow, V.C; Muller, F.J.; Pita, J.C.; Howell, D.S. Mechanical properties of canine articular cartilage are significantly altered following transection of the anterior cruciate ligament. J. Orthop. Res. In Press, 1994.

    Google Scholar 

  • Setton, L.A.; Zhu, W.B.; Mow, V.C. The biphasic poroviscoelastic behavior of articular cartilage in compression: Role of the surface zone. J. Biomechanics. 26:581–592; 1993b.

    CAS  Google Scholar 

  • Spilker, R.L.; Suh, J-K.; Mow, V.C; A finite element formulation for the nonlinear biphasic model for articular cartilage and hydrated soft tissues including strain-dependent permeability. In: Spilker, R.L., Simon, B.R. eds. Computational Methods in Bioengineering. New York: ASME; 1988; BED9:p.81–92.

    Google Scholar 

  • Spilker, R.L.; Suh, J-K.; Mow, V.C; Effects of friction on the unconfined compressive response of articular cartilage: A finite element analysis. J. Biomech. Engng. 112:138–146; 1990.

    CAS  Google Scholar 

  • Spirt, A.A.; Mak, A.F.; Wassell, R.P. Nonlinear viscoelastic properties of articular cartilage in shear. J. Orthop. Res. 7:43–49; 1989.

    PubMed  CAS  Google Scholar 

  • Stockwell, R.A. The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J. Anatomy. 109:411–421; 1971.

    CAS  Google Scholar 

  • Stockwell, R.A.; Meachim, G. The chondrocytes. In: Freeman, M.A.R., ed. Adult Articular Cartilage. London: Pitman Medical; 1973:p.51–99.

    Google Scholar 

  • Stockwell, R.A. Biology of Cartilage Cells. Cambridge, England: Cambridge University Press; 1979.

    Google Scholar 

  • Suh, J-K; Li, Z. Dynamic unconfined compression of articular cartilage under a cyclic compressive load. In: Langrana, N.A.; Friedman, M.H.; Grood, E.S. eds. 1993 Bioengineering Conference. New York: ASME; 1993:BED24;p.634–637.

    Google Scholar 

  • Sung, K-L.P.; Dong, C; Schmid-Schonbein, G.W.; Chien, S.; Skalak, R. Leukocyte relaxation properties. Biophys. J. 54:331–336; 1988.

    PubMed  CAS  Google Scholar 

  • Tammi, M.; Paukkonen, K.; Kiviranta, I.; Jurvelin, J.; Saamanen, A-M.; Helminen, H.J. Joint loading-induced alterations in articular cartilage. In Helminen H.J.; Kiviranta I.; Tammi, M.; Saamanen, A-M.; Paukkonen, K.; Jurvelin, J., eds. Joint Loading. Bristol, England: Wright; 1987:p.64–88.

    Google Scholar 

  • Tammi, M.; Parkkinen, J.J.; Lammi, M.J.; Helminen, H.J. Pressure and frequency related 35SO4 incorporation in cartilage expiants by short term cyclic compression. Trans. Orthop Res Soc. 16:52; 1991.

    Google Scholar 

  • Vener, J.M.; Thompson, R.C.; Lewis, J.L.; Oegema, T.R. Subchondral damage after acute transarticular loading: An in vitro model of joint injury. J. Orthop. Res. 10:759–765; 1992.

    PubMed  CAS  Google Scholar 

  • Warden, W.H.; Bachrach, N.M.; Chorney, G.S.; Ratcliffe, A.; Mow, V.C. Quantitation of anisotropic 3D deformation in different regions of the growth plate in compression. Trans. Orthop. Res. Soc. 19:144; 1994.

    Google Scholar 

  • Watson, P.A. Function follows form: Generation of intracellular signals by cell deformation. Intracellular Signals. 5:2013–2019; 1991.

    CAS  Google Scholar 

  • Wight, T.N.; Heinegard, D.K.; Hascall, V.C. Proteoglycans: structure and function. In: Hay, E.D. ed., Cell biology of extracellular matrix. 2nd edition. New York: Plenum Press; 1991:p.45–73.

    Google Scholar 

  • Woo, S.L.-Y.; Akeson, W.H.; Jemmott, G.F. Measurements of nonhomogeneous directional mechanical properties of articular cartilage in tension. J. Biomechanics. 9:785–791; 1976.

    CAS  Google Scholar 

  • Woo, SL-Y.; Kwan, M.K.; Lee, T.Q.; Field, F.P.; Kleiner, J.B.; Coutts, R.D. Perichondrial autograft for articular cartilage: Shear modulus of neocartilage studied in rabbits. Acta. Orthop. Scand. 58:510–515; 1987.

    PubMed  CAS  Google Scholar 

  • Wright, M.O.; Stockwell, R.A.; Nuki, G. Response of plasma membrane to applied hydrostatic pressure in chondrocytes and fibroblasts. Conn. Tiss. Res. 28:49–90. 1992.

    CAS  Google Scholar 

  • Zanetti, M.; Ratcliffe, A.; Watt, F.M. Two subpopulations of differentiated chondrocytes identified with a monoclonal antibody to keratan sulfate. J. Cell. Biol. 101:53–59; 1985.

    PubMed  CAS  Google Scholar 

  • Zhu, W.; Mow, V.C; Koob, T.J.; Eyre, D.R. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J. Orthop Res. 11:771–781; 1993.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Mow, V.C., Bachrach, N.M., Setton, L.A., Guilak, F. (1994). Stress, Strain, Pressure and Flow Fields in Articular Cartilage and Chondrocytes. In: Mow, V.C., Tran-Son-Tay, R., Guilak, F., Hochmuth, R.M. (eds) Cell Mechanics and Cellular Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8425-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8425-0_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8427-4

  • Online ISBN: 978-1-4613-8425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics