Cellular Tensegrity and Mechanochemical Transduction

  • D. E. Ingber

Abstract

To explain how biological tissues form and function, we must first understand how different types of regulatory signals, both chemical and mechanical, integrate inside the cell. A clue to the mechanism of signal integration comes from recognition that the action of a force on any mass, regardless of scale, will result in a change in three dimensional structure. This is critical because recent studies reveal that many of the molecules that mediate signal transduction and stimulus-response coupling are physically bound to insoluble structural scaffoldings within the cytoskeleton and nucleus (Ingber 1993a). In this type of “solid-state” regulatory system, mechanically-induced structural arrangements could provide a mechanism for regulating cellular biochemistry and hence, efficiently integrating structure and function. However, this is a difficult question to address using conventional molecular biological approaches because this problem is not based on changes in chemical composition or local binding interactions. Rather, it is a question of architecture. As a result of this challenge, a new scientific discipline of “Molecular Cell Engineering” is beginning to emerge which combines elements of molecular cell biology, bioengineering, architecture, and biomechanics.

Keywords

Migration Tyrosine Integrin Kelly Inositol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Ze’ev, A.; Farmer, S.R.; Penman, S. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell 17:319–325; 1979.PubMedCrossRefGoogle Scholar
  2. Burridge, K.; Fath, K.; Kelly, T.; Nucko, G.; Turner, C. Focal adhesions: transmembrane junctions between the extracellular matrix and cytoskeleton. Ann. Rev. Cell Biol. 4, 487–525; 1988.PubMedCrossRefGoogle Scholar
  3. Buxbaum, R.E.; Heideman, S.R. A thermodynamic model for force integration and microtubule assembly during axonal elongation. J. Theor. Biol. 134:379–390; 1988.PubMedCrossRefGoogle Scholar
  4. Cima, L.; Ingber, D.; Vacanti, J.; Langer, R. Hepatocyte culture on biodegradable substrates. Biotech. Bioengineer. 38:145–158; 1991a.CrossRefGoogle Scholar
  5. Cima, L.; Vacanti, J.; Vacanti, C; Mooney, D.; Ingber, D.; Langer, R. Tissue Engineering by Cell Transplantation using degradable polymer substrates. J. Biomech. Engin. 113:143–151; 1991b.CrossRefGoogle Scholar
  6. Cleveland, D.W.; Lopata, M.A.; Sherline, P.; Kirschner, M.W. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell 25:537–546; 1981.PubMedCrossRefGoogle Scholar
  7. Dennerll, T.J.; Joshi, H.C.; Steel, V.L.; Buxbaum, R.E.; Heideman, S.R. Tension and compression in the cytoskeleton of PC-12 neuntes II: quantitative measurements. J. Cell Biol. 107:665–674; 1988.PubMedCrossRefGoogle Scholar
  8. Dike, L.; Ingber, D.E.; Fibronectin activates growth-associated genes in endothelial cells. Mol. Biol. Cell 4: 299a; 1993.Google Scholar
  9. Hansen, L.K.; Ingber, D.E.; Regulation of nucleocytoplasmic transport by mechanical forces transmitted through the cytoskeleton. In: Feldherr, C., ed. Nuclear Trafficking. San Diego: Academic Press; 1992:p. 71–86.Google Scholar
  10. Hansen, L.K.,; Mooney, D.J.; Ingber, D.E. Regulation of cell cycle progression in hepatocytes by extracellular matrix and cell spreading. Mol. Biol. Cell 4: 348a; 1993.Google Scholar
  11. Hill, T.L. Microfilament and microtubule assembly or disassociation against a force. Proc. Nat. Acad. Sci. U.S.A. 78:5613–5617; 1981.CrossRefGoogle Scholar
  12. Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25; 1992.PubMedCrossRefGoogle Scholar
  13. Ingber, D.E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl. Acad. Sci. U.S.A. 87:3579–3583; 1990.PubMedCrossRefGoogle Scholar
  14. Ingber, D.E. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3:841–848; 1991.CrossRefGoogle Scholar
  15. Ingber, D.E. The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering? Cell 75:1249–1252; 1993a.PubMedCrossRefGoogle Scholar
  16. Ingber, D.E. Cellular Tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104:613–627; 1993b.PubMedGoogle Scholar
  17. Ingber, D.E. Extracellular matrix, cellular mechanics, and tissue engineering. In: Bell, E., ed. Tissue Engineering: Current Perspectives. Boston: Birkhauser; 1993c:p. 69–82.Google Scholar
  18. Ingber, D.E.; Dike, L.; Hansen, L.; Karp, S.; Liley, H.; Maniotis, A.; McNamee, H.; Mooney, D.; Plopper, G.; Sims, J.; Wang, N. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int. Rev. Cytol. 1994 — in press.Google Scholar
  19. Ingber, D.E.; Folkman, J. Inhibition of angiogenesis through inhibition of collagen metabolism. Lab. Invest. 59:44–51; 1988.Google Scholar
  20. Ingber, D.E.; Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109: 317–330; 1989a.PubMedCrossRefGoogle Scholar
  21. Ingber, D.E.; Folkman, J. How does extracellular matrix control capillary morphogenesis? Cell 58:803–807; 1989b.PubMedCrossRefGoogle Scholar
  22. Ingber, D.E.; Madri, J.A.; Folkman, J. Extracellular matrix regulates endothelial growth factor action through modulation of cell and nuclear expansion. In Vitro Cell Dev. Biol. 23:387–394; 1987.PubMedCrossRefGoogle Scholar
  23. Ingber, D.E.; Madri, J.A.; Jamieson, J.D. Basement membrane as a spatial organizer of polarized epithelia: exogenous basement membrane reorients pancreatic epithelial tumor cells in vitro. Am. J. Pathol. 122:129–139;1986PubMedGoogle Scholar
  24. Ingber, D.E.; Prusty, D.; Frangione, J.; Cragoe, E.J., Jr.; Lechene, C; Schwartz, M. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J. Cell Biol. 110:1803–1812; 1990.PubMedCrossRefGoogle Scholar
  25. Joshi, H.C.; Chu, D.; Buxbaum, R.E.; Heideman, S.R. Tension and compression in the cytoskeleton of PC 12 neuntes. J. Cell Biol. 101:697–705; 1985.PubMedCrossRefGoogle Scholar
  26. Kirschner, M.; Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342; 1986.PubMedCrossRefGoogle Scholar
  27. McMahon, T.A. In: Muscles, Reflexes, and Locomotion. Princeton Univ. Press, Princeton, N.J.; 1984.Google Scholar
  28. McNamee, H.; Ingber, D.; Schwartz, M. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J. Cell Biol. 121:673–678; 1993.PubMedCrossRefGoogle Scholar
  29. McNamee, H.P.; Ingber, D.E. Integrin-dependent activation of phosphoinositide kinases occurs within the focal adhesion complex. Mol. Biol. Cell 4:362a; 1993.Google Scholar
  30. Mooney, D.; Hansen, L.; Farmer, S.; Vacanti, J.; Langer, R.; Ingber, D. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell Physiol. 151:497–505; 1992a.PubMedCrossRefGoogle Scholar
  31. Mooney, D.J.; Langer, R.; Hansen, L.K.; Vacanti, J.P.; Ingber, D.E. Induction of hepatocyte differentiation by the extracellular matrix and an RGD-containing synthetic peptide. Proc. Mat. Res. Soc. 252:199–204; 1992.CrossRefGoogle Scholar
  32. Mooney, D.J.; Langer, R.; Ingber, D.E. Intracellular tubulin monomer levels are controlled by varying cell-extracellular matrix contacts. J. Cell Biol. 115:38a; 1991.Google Scholar
  33. Plopper, G.; Ingber, D.E. Rapid induction and isolation of focal adhesion complexes. Biochem. Biophys. Res. Commun. 193:571–578; 1993.PubMedCrossRefGoogle Scholar
  34. Plopper, G.; Schwartz, M.A.; Chen, L.B.; Lechene, C; Ingber, D.E. Binding of fibronectin induces assembly of a chemical signaling complex on the cell surface. J.Cell Biol. 115:130a; 1991.Google Scholar
  35. Schwartz, M. Transmembrane signaling by integrins. Trends in Biol. Sci. 2:304–308; 1992.CrossRefGoogle Scholar
  36. Schwartz, M.A.; Lechene, C; Ingber, D.E. Insoluble fibronectin activates the Na+/H+ antiporter by clustering and immobilizing integrin α5β1, independent of cell shape. Proc. Natl. Acad. Sci. U.S.A. 88:7849–7853; 1991.PubMedCrossRefGoogle Scholar
  37. Sims, J.; Karp, S.; Ingber, D.E. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal, and nuclear shape. J. Cell Sci. 103:1215–1222; 1992.PubMedGoogle Scholar
  38. Singhvi, R.; Kumar, A.; Lopez, G.; Stephanopoulos, G.N.; Wang, D.I.C.; Whitesides, G.M., Ingber, D.E. Engineering cell shape and function. Science 1994 — revised ms in review.Google Scholar
  39. Stamenovic, D. Micromechanical foundations of pulmonary elasticity. Physiol. Rev. 70:1117–1140; 1990.PubMedGoogle Scholar
  40. Wang, N.; Butler, J.P.; Ingber, D.E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124–1127; 1993.PubMedCrossRefGoogle Scholar
  41. Wang, N.; Ingber, D.E. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 1994 — revised ms in review.Google Scholar
  42. Wong, J.Y.; Langer, R.S.; Ingber, D.E. Electrically conducting polymers can non-invasively control the shape and growth of mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 1994 — in press.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • D. E. Ingber

There are no affiliations available

Personalised recommendations