Skip to main content

Role of Locally Produced Growth Factors in Human Placental Growth and Invasion with Special Reference to Transforming Growth Factors

  • Conference paper

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

Abstract

Anatomically, the human fetomaternal interface consists of the placenta, a fetally derived organ, and the decidua, a maternally derived tissue. Physical as well as molecular interactions at this interface hold the secrets to two important biological riddles: (i) What protects the placenta, a fetally derived organ and thus genetically disparate from the mother, from destruction by the mother’s immune system? and (ii) What protects the uterus from overinvasion by the placenta, which is a highly invasive tumorlike structure? The present chapter focuses largely on our studies related to the second riddle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hertig AT, Rock J. Two human ova of the previllous stage, having a developmental age of about seven and nine days respectively. Contrib Embryol Carnegie Inst 1945;31:65–84.

    Google Scholar 

  2. Boyd JD, Hamilton WJ. Development and structure of the human placenta from the end of the third month of gestation. J Obstet Gynaecol Br Commonw 1967;74:161–226.

    Article  PubMed  CAS  Google Scholar 

  3. Loke YW. Experimenting with human extravillous trophoblast:a personal view. Am J Reprod Immunol 1990;24:21–8.

    Google Scholar 

  4. Lala PK. Similarities between immunoregulation in pregnancy and in malignancy:the role of prostaglandin E2. Am J Reprod Immunol 1990;20:147–52.

    Google Scholar 

  5. Lala PK, Graham CH. Mechanisms of trophoblast invasiveness and their control:the role of proteases and protease inhibitors. Cancer Metastasis Rev 1990;9:369–79.

    Article  PubMed  CAS  Google Scholar 

  6. Graham CH, Lala PK. Mechanism of control of trophoblast invasion in situ. J Cell Physiol 1991;148:228–34.

    Article  PubMed  CAS  Google Scholar 

  7. Graham CH, Lala PK. Mechanisms of placental invasion of the uterus and their control. Biochem Cell Biol 1992;70:867–74.

    Article  PubMed  CAS  Google Scholar 

  8. Graham CH, McCrae KR, Lala PK. Molecular mechanisms controlling trophoblast invasion of the uterus. Troph Res 1993;7:237–50.

    CAS  Google Scholar 

  9. Kearns M, Lala PK. Characterization of hematogenous cellular constituents of the murine decidua:a surface marker study. J Reprod Immunol 1985;8:213–34.

    Article  PubMed  CAS  Google Scholar 

  10. Zhinken LN, Samoskina NA. DNA synthesis and cell proliferation during the formation of deciduomata in mice. J Embryol Exp Morphol 1967;17:593–605.

    Google Scholar 

  11. Galassi L. Autoradiographic study of the decidual cell reaction in the rat. Dey Biol 1968;17:75–84.

    Article  CAS  Google Scholar 

  12. Das RM, Martin L. Uterine DNA synthesis and cell proliferation during early decidualization induced by oil in mice. J Reprod Fertil 1978;53:125–8.

    Article  PubMed  CAS  Google Scholar 

  13. Bell SC. Decidualization and associated cell types:implications for the role of the placenta bed in the materno-fetal immunological relationship. J Reprod Immunol 1983;5:185–94.

    Article  PubMed  CAS  Google Scholar 

  14. Kearns M, Lala PK. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus. J Exp Med 1982;155:1537–54.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson S, Graham CH, Lysiak JJ, Lala PK. Hemopoietic origin of certain decidual cell precursors in murine pregnancy. Am J Anat 1989;185 (1):9–18.

    Article  PubMed  CAS  Google Scholar 

  16. Lysiak JJ, Lala PK. In situ localization and characterization of bone marrow-derived cells in the decidua of normal murine pregnancy. Biol Reprod 1992;47:603–13.

    Article  PubMed  CAS  Google Scholar 

  17. Riddick DH, Kusmik WF. Decidua:a possible source of amniotic fluid prolactin. Am J Obstet Gynecol 1976;127:187–90.

    Google Scholar 

  18. Kubota T, Kumasaka T, Yaoi Y, Suzuki A, Saito M. Study on immunoreactive prolactin of decidua in early pregnancy. Acta Endocrinol (Copenh) 1981;960:2580–640.

    Google Scholar 

  19. Graham CH, Lysiak JJ, McCrae KR, Lala PK. Localization of transforming growth factor-β at the human fetal-maternal interface:role in trophoblast growth and differentiation. Biol Reprod 1992;46:561–72.

    Article  PubMed  CAS  Google Scholar 

  20. Lysiak JJ, Han VKM, Lala PK. Localization of transforming growth factor-a (TGF-a) in the human placenta and decidua:role in trophoblast growth. Biol Reprod 1993.

    Google Scholar 

  21. Parhar RS, Kennedy TG, Lala PK. Suppression of lymphocyte alloreactivity by early gestational human decidua, I. Characterization of suppressor cells and suppressor molecules. Cell Immunol 1988;116:392–410.

    Article  PubMed  CAS  Google Scholar 

  22. Lala PK, Kennedy TG, Parhar RS. Suppression of lymphocyte alloreactivity by early gestational human decidua, II. Characterization of suppressor mechanisms. Cell Immunol 1988;116:411–22.

    Article  PubMed  CAS  Google Scholar 

  23. Lala PK, Scodras JM, Graham CH, Lysiak JJ, Parhar RS. Activation of maternal killer cells in the pregnant uterus with chronic indomethacin therapy, IL-2 therapy or a combination therapy is associated with embryonic demise. Cell Immunol 1990;127:368–81.

    Article  PubMed  CAS  Google Scholar 

  24. Scodras JM, Parhar RS, Kennedy TG, Lala PK. Prostaglandin-mediated inactivation of natural killer cells in the murine decidua. Cell Immunol 1990;127:352–67.

    Article  PubMed  CAS  Google Scholar 

  25. Parhar RS, Yagel S, Lala PK. PGE2-mediated immunosuppression by first trimester human decidual cells blocks activation of maternal leukocytes in the decidua with potential anti-trophoblast activity. Cell Immunol 1989;120:61–74.

    Article  PubMed  CAS  Google Scholar 

  26. Tawfik OW, Hunt JS, Wood GW. Implication of prostaglandin E in soluble factor-mediated immune suppression by murine decidual cells. Am J Reprod Immunol Microbiol 1986;12:111–7.

    CAS  Google Scholar 

  27. Mathews CJ, Searle RF. The role of prostaglandins in the immunosuppressive effects of supernatants from adherent cells of murine decidual tissue. J Reprod Immunol 1987;12:109–24.

    Article  Google Scholar 

  28. Clark DA, Flanders KC, Banwatt D, et al. Murine pregnancy decidua produces a unique immunosuppressive molecule related to transforming growth factor β-2 J. Immunol 1990;144:3008–14.

    PubMed  CAS  Google Scholar 

  29. Carpenter G, Wahl MI. The epidermal growth factor family. In:Sporn MB, Roberts AB, eds. Peptide growth factors and their receptors I. New York:Springer-Verlag, 1991:69–171.

    Google Scholar 

  30. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 1962;237:1555–62.

    PubMed  CAS  Google Scholar 

  31. Bell GI, Fong NM, Stempie NM, et al. Human epidermal growth factor precursor:cDNA sequence, expression in vitro and gene organization. Nucleic Acids Res 1986;14:8427–46.

    Article  PubMed  CAS  Google Scholar 

  32. Teixido J, Wong ST, Lee DC, Massague J. Generation of transforming growth factor-a from the cell surface by an 0-glycosylation-independent multistep process. J Biol Chem 1990;265:6410–5.

    PubMed  CAS  Google Scholar 

  33. Bringman TS, Lindquist PB, Derynck R. Different transforming growth factor-a species are derived from a glycosylated and palmitoylated trans-membrane precursor. Cell 1987;48:429–40.

    Article  PubMed  CAS  Google Scholar 

  34. Brachmann R, Lindquist PB, Nagashima N, et al. Transmembrane TGF-a precursors activate EGF/TGF-a receptors. Cell 1989;56:691–700.

    Article  PubMed  CAS  Google Scholar 

  35. Lee DC, Rockford R, Todaro GJ, Villarreal LP. Developmental expression of rat transforming growth factor-a mRNA. Mol Cell Biol 1985;5:3644–6.

    PubMed  CAS  Google Scholar 

  36. Wong ST, Winchell LF, McCune BK, et al. The TGF-a precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell 1989;56:495–506.

    Article  PubMed  CAS  Google Scholar 

  37. Massague J. The transforming growth factor-I-1 family. Annu Rev Cell Biol 1990;6:597–641.

    Article  PubMed  CAS  Google Scholar 

  38. Shoyab M, McDonald VL, Bradley JG, Todaro GJ. Amphiregulin:a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA 1988;85:6528–32.

    Article  PubMed  CAS  Google Scholar 

  39. Plowman GD, Green JM, McDonald VL, et al. The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity. Mol Cell Biol 1990;10 (5):1969–81.

    PubMed  CAS  Google Scholar 

  40. Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ. Structure and function of human amphiregulin:a member of the epidermal growth factor family. Science 1989;243:1074–6.

    Article  PubMed  CAS  Google Scholar 

  41. Johnson GR, Saeki T, Auersperg N, et al. Response to and expression of amphiregulin by ovarian carcinoma and normal ovarian surface epithelial cells:nuclear localization of endogenous amphiregulin. Biochem Biophys Res Commun 1991;180:481–8.

    Article  PubMed  CAS  Google Scholar 

  42. Johnson GR, Saeki T, Gordon AW, Shoyab M, Salomon DS, Stromberg K. Autocrine action of amphiregulin in a colon carcinoma cell line and immunocytochemical localization of amphiregulin in human colon. J Cell Biol 1992;118:741–51.

    Article  PubMed  CAS  Google Scholar 

  43. Derynck R, Jarret JA, Chen EY, et al. Human transforming growth factor-f3 complementary DNA sequence and expression in normal and transformed cells. Nature 1985;316:701–5.

    Article  PubMed  CAS  Google Scholar 

  44. Pircher R, Jullien P, Lawrence DA. ß-Transforming growth factor is stored in human blood platelets as a latent high molecular weight complex. Biochem Biophys Res Commun 1986;136:30–7.

    Article  PubMed  CAS  Google Scholar 

  45. Miyazono K, Heldin CH. Interaction between TGF-131 and carbohydrate structures in its precursor renders TGF-131 latent. Nature 1989;388:158–60.

    Article  Google Scholar 

  46. Miyazono K, Yuki K, Takaku F, et al. Latent forms of TGF-beta:structure and biology. Ann NY Acad Sci 1990;593:51–8.

    Article  PubMed  CAS  Google Scholar 

  47. Wakefield LM, Smith DM, Flanders KC, Sporn MB. Latent transforming growth factor-ßfrom human platelets. J Biol Chem 1988;263:7646–54.

    PubMed  CAS  Google Scholar 

  48. Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-I3 from fibroblast-conditioned medium. J Cell Biol 1988;106:1659–65.

    Article  PubMed  CAS  Google Scholar 

  49. Wakefield LM, Smith DM, Masui T, Harris CC, Sporn MB. Distribution and modulation of the cellular receptor for transforming growth factor-beta. J Cell Biol 1987;105:965–75.

    Article  PubMed  CAS  Google Scholar 

  50. O’Connor-McCourt MD, Wakefield LM. Latent transforming growth factor-13 in serum. J Biol Chem 1987;262:14090–9.

    PubMed  Google Scholar 

  51. Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-13 by the proteoglycan decorin. Nature 1990;346:281–4.

    Article  PubMed  CAS  Google Scholar 

  52. Border WA, Noble NA, Yamamoto T, et al. Natural inhibitor of transforming growth factor-13 protects against scarring in experimental kidney disease. Nature 1992;360:361–4.

    Article  PubMed  CAS  Google Scholar 

  53. Cheifetz S, Bassols A, Stanley K, Ohta M, Greenberger J, Massague J. Heterodimeric transforming growth factor-ß. Biological properties and interaction with three types of cell surface receptors. J Biol Chem 1988;263:10783–9.

    PubMed  CAS  Google Scholar 

  54. Jennings JC, Mohan S, Linkhart TA, Widstorm R, Baylink DJ. Comparison of the biological activities of TGF-ß1 and TGF-132:differential activity in endothelial cells. J Cell Physiol 1988;137:167–72.

    Article  PubMed  CAS  Google Scholar 

  55. Rechler MM, Nissley SP. Insulin-like growth factors. In:Sporn MB, Roberts AB, eds. Peptide growth factors and their receptors I. New York:Springer-Verlag, 1991:263–368.

    Google Scholar 

  56. Kiess W, Blickenstaff GD, Sklar MM, Thomas CL, Nissley SP, Sahagian GG. Biochemical evidence that the type II insulin-like growth factor is identical to the cation-independent mannose 6-phosphate receptor. J Biol Chem 1988;263:9339–44.

    PubMed  CAS  Google Scholar 

  57. Mathieu M, Rochefort H, Barenton B, Prebois C, Vignon F. Interactions of cathepsin-D and insulin-like growth factor-II (IGF-II) on the IGF-IImannose-6-phosphate receptor in human breast cancer cells and possible consequences on mitogenic activity of IGF-II. Mol Endocrinol 1990;4:1327–35.

    Article  PubMed  CAS  Google Scholar 

  58. Shimasaki S, Ling N. Identification and molecular characterization of insulin-like growth factor binding proteins (IGFBP-1, -2, -3, -4, -5 and -6). Prog Growth Factor Res 1991;3:243–66.

    Article  PubMed  CAS  Google Scholar 

  59. DeMellow JSM, Baxter RC. Growth hormone-dependent insulin-like growth factor (IGF) binding protein both inhibits and potentiates IGF-I-stimulated DNA synthesis in human skin fibroblasts. Biochem Biophys Res Commun 1988;156:199–204.

    Article  CAS  Google Scholar 

  60. Clemmons DR. Insulin-like growth factor binding proteins’roles in regulating IGF physiology. J Dev Physiol 1991;15:105–10.

    PubMed  CAS  Google Scholar 

  61. McCusker RH, Clemmons DR. The insulin-like growth factor binding proteins:structure and biological functions. In:Schofield P, ed. The insulin-like growth factors:structure and biological functions. Oxford:Oxford University Press 1992:110–50.

    Google Scholar 

  62. Stromberg K, Pigott DA, Ranchalis JE, Twardzik DR. Human term placenta contains transforming growth factors. Biochem Biophys Res Commun 1982;106:354–61.

    Article  PubMed  CAS  Google Scholar 

  63. Haining REB, Schofield JP, Jones DSC, Rajput-Williams J, Smith SK. Identification of mRNA for epidermal growth factor and transforming growth factor-a in low copy number in human endometrium and decidua using reverse transcriptase-polymerase chain reaction. J Mol Endocrinol 1991;6:207–14.

    Article  PubMed  CAS  Google Scholar 

  64. Lai WH, Guyda H. Characterization and regulation of epidermal growth factor receptors in human placental cell cultures. J Clin Endocrinol Metab 1984;58:344–52.

    Article  PubMed  CAS  Google Scholar 

  65. Chen CF, Kurachi H, Fujita Y, Terakawa N, Miyake A, Tanizawa. Changes in epidermal growth factor receptor and its messenger ribonucleic acid levels in human placenta and isolated trophoblast cells during pregnancy. J Clin Endocrinol Metab 1988;67 (6):1171–7.

    Article  PubMed  CAS  Google Scholar 

  66. Muhlhauser J, Crescimanno C, Kaufmann P, Hofier H, Zaccheo D, Castellucci M. Differentiation and proliferation patterns in human trophoblast revealed by c-erbB-2 oncogene product and EGF-R. J Histochem Cytochem 1993;41 (2):165–73.

    Article  PubMed  CAS  Google Scholar 

  67. Hofmann GE, Scott RT Jr, Bergh PA, Deligdisch L. Immunohistochemical localization of epidermal growth factor in human endometrium, decidua, and placenta. J Clin Endocrinol Metab 1991;73 (4):882–7.

    Article  PubMed  CAS  Google Scholar 

  68. Bissonnette F, Cook C, Geoghegan T, et al. Transforming growth factor-a and epidermal growth factor messenger ribonucleic acid and protein levels in human placentas from early, mid, and late gestation. Am J Obstet Gynecol 1992;166:192–9.

    PubMed  CAS  Google Scholar 

  69. Filla MS, Zhang CX, Kaul KL. A potential transforming growth factor a/epidermal growth factor receptor autocrine circuit in placental cytotrophoblasts. Cell Growth Differ 1993;4:387–93.

    PubMed  CAS  Google Scholar 

  70. Han VK, Hunter ES, Pratt RM, Zendegui JG, Lee DC. Expression of rat transforming growth factor a mRNA during development occurs predominantly in the maternal decidua. Mol Cell Biol 1987;7:2335–43.

    PubMed  CAS  Google Scholar 

  71. Bonvissuto AC, Lala PK, Kennedy TG, Nygard K, Lee DC, Han VKM. Induction of transforming growth factor-a expression in rat decidua is independent of the conceptus. Biol Reprod 1992;46:607–16.

    Article  PubMed  CAS  Google Scholar 

  72. Lysiak JJ, Johnson GR, Lala PK. Localization and function of amphiregulin in the human placenta [Abstract]. Proc Can Fed Biol Soc 1993;36:60.

    Google Scholar 

  73. Frolick CA, Dart LL, Meyers CA, Smith DM, Sporn MB. Purification and initial characterization of a type ßtransforming growth factor from human placenta. Proc Natl Acad Sci USA 1983;80:3676–80.

    Article  Google Scholar 

  74. Dungy LJ, Siddiqi TA, Khan S. Transforming growth factor-3 expression during placental development. Am J Obstet Gynecol 1991;4 (1):853–7.

    Google Scholar 

  75. Lysiak JJ, Graham C, Riley S, Johnson G, Lala PK. Localization of transforming growth factor f3 (TGFß) and amphiregulin in the human placenta and decidua throughout gestation [Abstract]. Am J Reprod Immunol 1992;27 (1/2):46.

    Google Scholar 

  76. Mitchell EJ, Fitz-Gibbon L, O’Connor-McCourt MD. Subtypes of betaglycan and of type I and type II transforming growth factor-I3 (TGF-ß) receptors with different affinities for TGF-ßl and TGF-132 are exhibited by human placental trophoblast cells. J Cell Physiol 1992;150:334–43.

    Article  PubMed  CAS  Google Scholar 

  77. Lysiak JJ, Pringle GA, Lala PK. Immunolocalization of TGF-f3 and decorin (its natural inhibitor) in the human placenta and decidua. Placenta 1993.

    Google Scholar 

  78. Hill DJ, Clemmons DR, Riley SC, Bassett N, Challis JRG. Immunohistochemical localization of insulin-like growth factors (IGFs) and IGF binding proteins-1, -2, and -3 in human placenta and fetal membranes. Placenta 1993;14:1–12.

    Article  PubMed  CAS  Google Scholar 

  79. Brice AL, Cheetham JE, Bolton VN, Hill NCW, Schofield PN. Temporal changes in the expression of the insulin-like growth factor II gene associated with tissue maturation in the human fetus. Development 1989;106:543–54.

    PubMed  CAS  Google Scholar 

  80. Rutanen EM, Pekonen F, Makinen T. Soluble 34K binding protein inhibits the binding of insulin-like growth factor I to its cell receptors in human secretory phase endometrium:evidence for autocrine/paracrine regulation of growth factor action. J Clin Endocrinol Metab 1988;66:173–80.

    Article  PubMed  CAS  Google Scholar 

  81. Rutanen EM, Partanen S, Pekonen F. Decidual transformation of human extrauterine mesenchymal cells is associated with the appearance of insulin-like growth factor-binding protein-1. J Clin Endocrinol Metab 1991;72 (1):27–31.

    Article  PubMed  CAS  Google Scholar 

  82. Waites GT, James RFL, Bell SC. Human pregnancy-associated endometrial a-globin, an insulin-like growth factor-binding protein:immunohistological localization in the decidua and placenta during pregnancy employing monoclonal antibodies. J Endocrinol 1989;120:351–7.

    Article  PubMed  CAS  Google Scholar 

  83. Yagel S, Casper RF, Powel W, Parhar RS, Lala PK. Characterization of pure human first trimester cytotrophoblast cells in long term culture:growth pattern, markers, and hormone production. Am J Obstet Gynecol 1989;160:938–45.

    PubMed  CAS  Google Scholar 

  84. Irving JA, Lysiak JJ, Han VKM, Lala PK. Properties of trophoblast cells growing out of first trimester human chorionic villus explants prior to their propagation. Placenta 1993.

    Google Scholar 

  85. Zini JM, Murray SC, Graham CH, et al. Identification and characterization of urokinase receptors expressed by human trophoblasts. Blood 1992;79:2917–29.

    PubMed  CAS  Google Scholar 

  86. Graham CH, Lysiak JJ, Irving JA, et al. Characteristics of first trimester normal human trophoblast cells propagated in culture. Placenta 1993.

    Google Scholar 

  87. Shorter SC, Starkey PM, Ferry BL, Sargent IL, Redman CWG. Isolation of cell island cytotrophoblast from first trimester human placenta and characterization of NDOG5, a monoclonal antibody specific for a human trophoblast subpopulation. Placenta 1991;12 (4):434–5.

    Google Scholar 

  88. Graham CH, Hawley TS, Hawley RG, et al. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res 1993;206:204–11.

    Article  PubMed  CAS  Google Scholar 

  89. Lysiak JJ, Connelly IH, Khoo NKS, Stetler-Stevenson W, Lala PK. Role of transforming growth factor-a (TGF-a) and epidermal growth factor ( EGF) on proliferation and invasion by first trimester human trophoblast. Troph Res 1993.

    Google Scholar 

  90. Lysiak JJ, Han VKM, Lala PK. Role of insulin-like growth factor ( IGF)-II on human first trimester trophoblast cell growth and invasion. Placenta 1993.

    Google Scholar 

  91. Hart IR, Fidler IJ. An in vitro assay for tumour cell invasion. Cancer Res 1978;38:3218–24.

    PubMed  CAS  Google Scholar 

  92. Chambers AF, Shafir R, Ling V. A model system for studying metastasis using the embryonic chick. Cancer Res 1982;42:4018–25.

    PubMed  CAS  Google Scholar 

  93. Mareel M, Klint J, Meyvisch C. Methods of study of the invasion of malignant C3H mouse fibroblasts into embryonic chick heart in vitro. Virchows Arch [B] 1979;30:95–111.

    CAS  Google Scholar 

  94. Starkey JR, Hosick HL, Stanford DR, Liggitt HD. Interaction of metastatic tumour cells with bovine lens capsule basement membrane. Cancer Res 1984;44:1585–94.

    PubMed  CAS  Google Scholar 

  95. Liotta LA, Lee CW, Moraski DJ. New method for preparing large surfaces of intact human basement membrane for tumour invasion studies. Cancer Lett 1980;11:141–52.

    Article  PubMed  CAS  Google Scholar 

  96. Mignatti P, Robbins E, Rifkin DB. Tumour invasion through the human amniotic membrane:requirement for a proteinase cascade. Cell 1986;47:487–98.

    Article  PubMed  CAS  Google Scholar 

  97. Yagel S, Parhar RS, Jeffrey JJ, Lala PK. Normal nonmetastatic human trophoblast cells share in vitro invasive properties of malignant cells. J Cell Physiol 1988;136:455–62.

    Article  PubMed  CAS  Google Scholar 

  98. Repesh LA. A new in vitro assay for quantitating tumour cell invasion. Invasion Metastasis 1989;9:192–208.

    PubMed  CAS  Google Scholar 

  99. Connelly I, Lysiak JJ, Khoo N, Graham CH, Lala PK. Differential regulation of normal trophoblast and choriocarcinoma cell proliferation and invasiveness by transforming growth factors [Abstract]. Am J Reprod Immunol 1992;27 (1/2):47.

    Google Scholar 

  100. Kliman HJ, Feinberg RF. Human trophoblast-extracellular matrix (ECM) interactons in vitro:ECM thickness modulates morphology and proteolytic activity. Proc Natl Acad Sci USA 1990;87:3057–61.

    Article  PubMed  CAS  Google Scholar 

  101. Fisher SJ, Leitch MS, Kantor MS, Basbaum CB, Kramer RH. Degradation of extracellular matrix by trophoblastic cells of first trimester human placentas. J Cell Biochem 1985;27:31–41.

    Article  PubMed  CAS  Google Scholar 

  102. Fisher SJ, Cui T, Zhang L, et al. Adhesive and degradative properties of human placental cytotrophoblast cells in vitro. J Cell Biol 1989;109:891–902.

    Article  PubMed  CAS  Google Scholar 

  103. Librach CL, Werb Z, Fitzgerald ML, et al. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol 1991;113:437–49.

    Article  PubMed  CAS  Google Scholar 

  104. Kirby DRS. The development of mouse eggs beneath the kidney capsule. Nature 1960;187:707–8.

    Article  PubMed  CAS  Google Scholar 

  105. Kirby DRS. The development of mouse blastocysts transplanted to the spleen. J Reprod Fertil 1963;5:1–12.

    Article  PubMed  CAS  Google Scholar 

  106. Kirby DRS. The development of the mouse blastocyst transplanted to the cryptorchid and scrotal testis. J Anat 1963;97:119–30.

    PubMed  CAS  Google Scholar 

  107. Kirby DRS. The “invasiveness”of the trophoblast. In:Park WW, ed. The early conceptus, normal and abnormal. Edinburgh:University of St. Andrews Press, 1965:68–74.

    Google Scholar 

  108. Liotta LA, Rao CN, Wewer UM. Biochemical interactions of tumour cells with the basement membrane. Annu Rev Biochem 1986;55:1037–57.

    Article  PubMed  CAS  Google Scholar 

  109. Loke YW, Gardner L, Grabowska A. Isolation of human extravillous trophoblast cells by attachment to laminin-coated magnetic beads. Placenta 1989;10:407–15.

    Article  PubMed  CAS  Google Scholar 

  110. Damsky CH, Fitzgerald ML, Fisher SJ. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J Clin Invest 1992;89:210–22.

    Article  PubMed  CAS  Google Scholar 

  111. Emonard H, Christiane Y, Smet M, Grimaud JA, Foidart JM. Type IV and interstitial collagenolytic activities in normal and malignant trophoblast cells are specifically regulated by the extracellular matrix. Invasion Metastasis 1990;10:170–7.

    PubMed  CAS  Google Scholar 

  112. Lysiak JJ, Hearn SA, Lala PK. Immuno-electron microscopic analysis of trophoblast cells in explant cultures of human first trimester chorionic villi [Abstract]. Proc Can Fed Biol Soc 1993;36:57.

    Google Scholar 

  113. Feinberg RF, Kliman HJ, Lockwood CJ. Is oncofetal fibronectin a trophoblast glue for human implantation. Am J Pathol 1991;138 (3):537–43.

    PubMed  CAS  Google Scholar 

  114. Hearn S, Walton J, Chapman W. Evidence that fibronectin in human placentas is derived from intermediate trophoblasts [Abstract]. Lab Invest 1992;66 (1):64a.

    Google Scholar 

  115. Yagel S, Feinmesser R, Waghorne C, Lala PK, Breitman ML, Dennis JW. Evidence that ß1–6 branched asn-linked ogliosaccharides on metastatic tumour cells facilitate invasion of basement membranes. Int J Cancer 1990;44:685–90.

    Article  Google Scholar 

  116. Yagel S, Kerbel RS, Lala PK, Elder-Gara T, Dennis JW. Basement membrane invasion by first trimester human trophoblast:requirement for branched complex-type asn-linked ogliosaccharides. Clin Exp Metastasis 1990;8:305–17.

    Article  PubMed  CAS  Google Scholar 

  117. Connelly IH, Lala PK. Effects of antisense oligonucleotides targeted against metalloproteinases on matrigel invasion by normal and malignant trophoblasts [Abstract]. Proc Can Fed Biol Soc 1993;36:139.

    Google Scholar 

  118. Welgus HG, Campbell EJ, Bar-Shavit Z, Senior RM, Teitelbaum SC. Human alveolar macrophages produce a fibroblast-like collagenase and collagenase inhibitor. J Clin Invest 1985;76:219–24.

    Article  PubMed  CAS  Google Scholar 

  119. Welgus HG, Stricklin GP. Human skin fibroblast collagenase inhibitor. J Biol Chem 1983;258:12259–64.

    PubMed  CAS  Google Scholar 

  120. Stetler-Stevenson WG, Krutzach HL, Liotta LA. Tissue inhibitor of metalloproteinases (TIMP-2). J Biol Chem 1989;264:17372–8.

    Google Scholar 

  121. Feinberg RF, Kao L, Haimowitz JE, et al. Plasminogen activator inhibitor types 1 and 2 in human trophoblasts PAI-1 is an immunocytochemical marker of invading trophoblasts. Lab Invest 1989;61:20–6.

    PubMed  CAS  Google Scholar 

  122. Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF III. Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 1986;118(4):1567–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Lala, P.K., Lysiak, J.J. (1994). Role of Locally Produced Growth Factors in Human Placental Growth and Invasion with Special Reference to Transforming Growth Factors. In: Hunt, J.S. (eds) Immunobiology of Reproduction. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8422-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8422-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8424-3

  • Online ISBN: 978-1-4613-8422-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics