Output Feedback in Descriptor Systems

  • Angelika Bunse-Gerstner
  • Volker Mehrmann
  • Nancy K. Nichols
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 62)


A summary is given of conditions under which a descriptor, or generalized state-space, system can be regularized by output feedback. Theorems are presented showing that under these conditions proportional and derivative output feedback controls can be constructed such that the closed loop system is regular and has index at most one. This property ensures the solvability of the resulting system of dynamic-algebraic equations. A canonical form is given that allows the system properties as well as the feedback to be determined. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. A computational algorithm for improving the ‘conditioning’ of the regularized closed loop system is described.


Closed Loop System Descriptor System Output Feedback Loop System Standard System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Bunse-Gerstner, V. Mehrmann, N.K. Nichols, “Derivative Feedback for Descriptor Systems”, FSP Mathematisierung, Universität Bielefeld, Bielefeld, F.R.G., Materialien LVIII,1989, presented at the IFAC International Workshop on System Structure and Control: State-space and Polynomial Methods, Prague, September 1989.Google Scholar
  2. [2]
    A. Bunse-Gerstner, V. Mehrmann, N.K. Nichols, “On Derivative and Proportional Feedback Design for Descriptor Systems”, in Signal Processing, Scattering and Operator Theory, and Numerical Methods, Proceedings of the Intern. Symposium MTNS-89, (M.A. Kaashoek et al edtrs.), Vol.III, Birkhäuser, Basel, 1990, pp.437–446Google Scholar
  3. [3]
    A. Bunse-Gerstner, V. Mehrmann, N.K. Nichols, “Regularization of Descriptor Systems by Derivative and Proportional State Feedback,” SIAM J. Matrix Analysis Appl., Vol.13, 1992, pp. 46–67.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    A. Bunse-Gerstner, V. Mehrmann, N.K. Nichols, “Numerical Methods for the Regularization of Descriptor Systems by Output Feedback”, Institute for Mathematics and its Applications, University of Minnesota, IMA Preprint Series No. 987, July, 1992.Google Scholar
  5. [5]
    S.L. Campbell, “Singular Systems of Differential Equations” Pitman, San Francisco, 1980.zbMATHGoogle Scholar
  6. [6]
    M. Christodoulou, “Decoupling in the Design and Synthesis of Singular Systems” Automatica, Vol. 22, No. 2, 1986, pp. 245–249.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    D.J. Cobb, “Feedback and Pole Placement in Descriptor Variable Systems” Int. J. Control, Vol. 33, No. 6, 1981, pp. 1135–1146.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    L. Dai, “Singular Control Systems”, Lecture Notes in Control and Information Sciences, Vol. 118, Springer Verlag, Berlin 1989zbMATHCrossRefGoogle Scholar
  9. [9]
    L. Eisner, C. He, V. Mehrmann, “Minimizing the Norm, the Norm of the Inverse and the Condition Number of a Matrix by Completion”, Preprint 92–028, Sonderforschungsbereich 343, ‘Diskrete Strukturen in der Mathematik’, Universität Bielefeld, to appear in Jour. Num. Lin. Algebra with Appl.Google Scholar
  10. [10]
    L.R. Fletcher, J. Kautsky, N.K. Nichols, “Eigenstructure Assignment in Descriptor Systems” IEEE Trans. Autom. Control, AC-31, 1986, pp. 1138–1141.CrossRefGoogle Scholar
  11. [11]
    F.R. Gantmacher, “Theory of Matrices,” Vol. I, II Chelsea, New York, 1959.zbMATHGoogle Scholar
  12. [12]
    G.H. Golub, C.F. Van Loan, “Matrix Computations” North Oxford A cademic, Oxford, 1983.zbMATHGoogle Scholar
  13. [13]
    J. Kautsky, N.K. Nichols, E.K.-W. Chu, “Robust Pole Assignment in Singular Control Sytems” Lin. Alg. Appl., Vol. 121, 1989, pp. 9–37.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    V. Kucera, D. Zagalak, “Fundamental Theorem of State Feedback for Singular Systems”, Automatica, Vol. 24, 1988, pp. 653–658MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    F.L. Lewis, “Descriptor Systems: Fundamental Matrix, Reachability and Observability Matrices, Subspaces” Proceedings of 23rd Conference on Decision and Control, Las Vegas, NV, December 1984, pp. 293–298.Google Scholar
  16. [16]
    D.G. Luenberger, “Dynamic Equations in Descriptor Form” IEEE Trans. Autom. Control, Vol. AC-22, 1977, pp. 312–321.MathSciNetCrossRefGoogle Scholar
  17. [17]
    V. Mehrmann, “Existence, Uniqueness and Stability of Solutions to Singular Linear Quadratic Control Problems” Lin. Alg. Appl., Vol. 121, 1989, 291–331MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    R. Mukundan, W. Dayawansa, “Feedback Control of Singular Systems — Proportional and Derivative Feedback of the State” Int. J. Syst. Sci., Vol. 14, 1983, pp. 615–632.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    K. Ozcaldiran, “Geometric Notes on Descriptor Systems”, Proceedings of the 27th, CDC, Los Angeles, Ca, 1987Google Scholar
  20. [20]
    D.W. Pearson, M.J. Chapman, D.N. Shields, “Partial Singular Value Assignment in the Design of Robust Observers for Discrete Time Descriptor Systems” IMA. J. of Math. Control and Inf., Vol. 5, 1988, pp. 203–213.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    H.H. Rosenbrock, “Structural Properties of Linear Dynamic Systems” Int. J. Control, Vol. 20, No. 2, 1974,pp. 191–202.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    M.A. Shayman, “Pole Placement by Dynamic Compensation for Descriptor Systems” Automatica, Vol. 24, 1988, pp. 279–282.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    M.A. Shayman, Z. Zhou,“ Feedback Control and Classification of Generalized Linear Systems” IEEE Trans. Autom. Control, Vol. AC-32, No. 6, 1987, pp. 483–494.MathSciNetCrossRefGoogle Scholar
  24. [24]
    P. Van Dooren, “The Generalized Eigenstructure Problem in Linear System Theory,” IEEE Transactions on Automatic Control, Vol. 6, 1981, pp. 111–129.CrossRefGoogle Scholar
  25. [25]
    G.C. Verghese, B.C. Lévy, T. Kailath,“ A General State Space for Singular Systems” IEEE Trans. Autom. Control, AC-26, No. 4, 1981, pp. 811–831.CrossRefGoogle Scholar
  26. [26]
    G.C. Verghese, P. Van Dooren, T. Kailath, “Properties of the System Matrix of a Generalized State Space System” Int. J. Control, Vol. 30, 1979, pp. 235–243.zbMATHCrossRefGoogle Scholar
  27. [27]
    E.L. Yip, R.F. Sincovec, “Solvability, Controllability and Observability of Continuous Descriptor Systems” IEEE Trans. Autom. Control, AC-26, 1981, pp. 702–707.MathSciNetCrossRefGoogle Scholar
  28. [28]
    Z. Zhou, M.A. Shayman, T.-J. Tarn, “Singular Systems: A New Approach in the Time Domain” IEEE Trans. Autom. Control, Vol. AC-32, No. 1, 1987, pp. 42–50.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Angelika Bunse-Gerstner
    • 1
    • 2
    • 3
  • Volker Mehrmann
    • 3
    • 4
  • Nancy K. Nichols
    • 5
  1. 1.Fachbereich Mathematik und InformatikUniversität BremenBremen 33Germany
  2. 2.Diskrete Strukturen in der MathematikUniversität BielefeldGermany
  3. 3.FSP MathematisierungUniversität BielefeldGermany
  4. 4.Fakultät für MathematikUniversität BielefeldBielefeld 1Germany
  5. 5.Department of MathematicsUniversity of ReadingReadingUK

Personalised recommendations