Advertisement

Some Numerical Challenges in Control Theory

  • Paul Van Dooren
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 62)

Abstract

We discuss a number of novel issues in the interdisciplinary area of numerical linear algebra and control theory. Although we do not claim to be exhaustive we give a number of problems which we believe will play an important role in the near future. These are: sparse matrices, structured matrices, novel matrix decompositions and numerical shortcuts. Each of those is presented in relation to a particular (class of) control problems. These are respectively: large scale control systems, polynomial system models, control of periodic systems, and normalized coprime factorizations in robust control.

Key words

Numerical algorithms linear algebra sparse matrices polynomial systems periodic systems robust control 

AMS(MOS) subject classifications

93b55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.D.O. Anderson, Y. Liu, Controller reduction: concepts and approaches, IEEE Trans. Aut. Contr. AC-34 (1989) 802–812.MathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Barnett, Polynomials and linear control systems, Marcel Dekker, New York, 1983.zbMATHGoogle Scholar
  3. [3]
    A. Bojanczyk, G. Golub, P. Van Dooren, The perodic Schur decomposition. Algorithms and applications, Int. Rept. Stanford Univ., Stanford CA 94305, 1992, also Proceedings SPIE Conference, San Diego, July 1992.Google Scholar
  4. [4]
    D. Boley, G. Golub, The Lanczos-Arnoldi algorithm and controllability, Systems and Control Letters 4 (1984) 317–324.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    J.-P. Charlier, P. Van Dooren, A systolic algorithm for Riccati and Lyapunov equations, Mathematics of Control, Signals and Systems 2 (1989) 109–136.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    B.N. Datta, Parallel algorithms in control theory, Proceedings 30th IEEE Conf. Dec. & Contr. (1991) 1700–1704.Google Scholar
  7. [7]
    B. De Moor, P. Van Dooren, Generalizations of the singular value and QR decomposition, SIAM Matr. Anal. & Applic. 13 (1992) to appear.Google Scholar
  8. [8]
    J. Doyle, B. Francis and A. Tannenbaum, Feedback Control Theory, McMillan, 1992.Google Scholar
  9. [9]
    A. Edelman, The first annual large dense linear system survey, Int. Rept. Univ. California, Berkeley CA 94720, 1991.Google Scholar
  10. [10]
    B. Francis, T. Georgiou, Stability theory for linear time-invariant plants with periodic digital controllers, IEEE Trans. Aut. Contr. 33 (1988) 820–832.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    R. Freund, N. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60 (1991) 315–339.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    F.R. Gantmacher, The Theory of Matrices I and II, Chelsea, New York, 1959.Google Scholar
  13. [13]
    J. Gardiner, Iterative and parallel algorithms for the solution of algebraic Riccati equations, Ph. D. Thesis, Univ. California, Santa Barbara, 1988.Google Scholar
  14. [14]
    K. Glover, D. Mc Farlane, Robust stabilization of normalized coprime factor plant descriptions with H.-bounded uncertainty, IEEE Trans. Aut. Contr. AC-34 (1989) 821–830.MathSciNetCrossRefGoogle Scholar
  15. [15]
    G. Golub, C. Van Loan, Matrix Computations 2nd edition, The Johns Hopkins University Press, Baltimore, Maryland, 1989.zbMATHGoogle Scholar
  16. [16]
    O. Grasselli, S. Longhi, The geometric approach for linear periodic discrete-time systems, Lin. Algebra & Applic. 158 (1991) 27–60.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    M. Heath, A. Laub, C. Paige, R. Ward, Computing the singular value decomposition of a product of two matrices, SIAM J. Sci. Stat. Comput. 7 (1986) 1147–1159.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    A. Heemink, Kaiman filtering of two-dimensional shallow water flow on a vector processor, Supercomputer 20/21 (1987) 32–44.Google Scholar
  19. [19]
    D. Higham, N. Higham, Backward error and condition of structured linear systems, SIAM Matrix Anal. & Appl. 13 (1992) 162–176.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    S. Hodel, K. Poolla, Numerical solution of very large sparse Lyapunov equations through approximate power iteration, Proceedings 29th IEEE Conf. Dec. & Contr. (1990) 291–296.Google Scholar
  21. [21]
    M. Jenkins, J. Traub, A three-stage algorithm for real polynomials using quadratic iteration, SIAM Numer. Anal. 7 (1970) 545–566.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    P. Kokotovic, W. Perkins, J. Cruz, G. D’Ans, ε-coupling method for near-optimum design of large-scale linear systems, Proceedings of the IEE 5 (1969) 889–892.MathSciNetGoogle Scholar
  23. [23]
    V. Kucera, Discrete linear control. The polynomial equation approach, Chichester: Wiley & Sons, 1979.zbMATHGoogle Scholar
  24. [24]
    A. Laub, Invariant subspace methods for the numerical solution of Riccati equations, in The Riccati equation, Eds. Bittanti, Laub, Willems, Springer Verlag, 1990.Google Scholar
  25. [25]
    Y. Saad, Overview of Krylov subspace methods with applications to control problems, in Signal Processing, Scattering and Operator Theory, and Numerical Methods, Birkhäuser Boston Inc. 1990.Google Scholar
  26. [26]
    Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM Numer. Anal. 29: 209–228 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    R. Srikant, T. Basar, Sequential decomposition and policy iteration schemes for M-player games with partial weak coupling, Automatica (1992) to appear.Google Scholar
  28. [28]
    M. Steinbuch, J. Terlouw, O. Bosgra, S. Smit, Multivariable application of μ analysis of servo system design in the consumer electronics industry, IEE Colloquium on Successful Industrial Applications of Multivariable Analysis, London, 1990.Google Scholar
  29. [29]
    P. Van Dooren, The generalized eigenstructure problem in linear system theory, IEEE Trans. Aut. Contr. AC-26 (1981) 111–129.CrossRefGoogle Scholar
  30. [30]
    P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM Sci. & Stat. Comp. 2 (1981) 121–135.zbMATHCrossRefGoogle Scholar
  31. [31]
    P. Van Dooren, M. Verhaegen, On the use of unitary state-space transformations, in Special Issue of Contemporary Mathematics on Linear Algebra and its Role in Linear System Theory, AMS, 1985.Google Scholar
  32. [32]
    P. Van Dooren, Numerical aspects of system and control algorithms, Journal A 30 (1989) 25–32.zbMATHGoogle Scholar
  33. [33]
    P. Van Dooren, Rational and polynomial matrix factorizations via recursive pole-zero cancellation, Linear Algebra & Applications 137/138 (1990) 663–697.CrossRefGoogle Scholar
  34. [34]
    P. Van Dooren, Structured linear algebra problems in digital signal processing, in Numerical linear algebra, digital signal processing and parallel algorithms, Nato Series F, Springer Verlag (1990) 361–384.Google Scholar
  35. [35]
    P. Van Dooren, Numerical linear algebra techniques for large scale matrix problems in systems and control, Proceedings 31st IEEE Conf. Dec. & Contr. (1992) to appear.Google Scholar
  36. [36]
    A. van den Boom, A. Brown, F. Dumortier, A. Geurts, S. Hammarling, R. Kool, M. Vanbegin, P. Van Dooren, S. Van Huffel, SLICOT, a subroutine library for control and system theory, IFAC Symp. on CADCS, Swansea UK, July 1991.Google Scholar
  37. [37]
    A. Varga, A Schur method for pole assignment, IEEE Trans. Aut. Contr. AC-26 (1981) 517–519.CrossRefGoogle Scholar
  38. [38]
    M. Vidyasagar, Control System Synthesis: a Factorization Approach, MIT Press, Cambridge, MA, 1985.zbMATHGoogle Scholar
  39. [39]
    Z. Vostry, New algorithm for polynomial spectral factorization with quadratic convergence I. Kybernetika 11 (1975) 415–422.MathSciNetzbMATHGoogle Scholar
  40. [40]
    R. Walker, C. Gregory, S. Shah, MATRIXx: A data analysis, system identification, control design and simulation package, Control Systems Magazine 2:4 (1982) 30–37.CrossRefGoogle Scholar
  41. [41]
    J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon press, Oxford, 1965.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Paul Van Dooren
    • 1
  1. 1.Coordinated Science LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations