Advertisement

Transfer Function Approach to Disturbance Decoupling Problem

  • Marek Rakowski
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 62)

Abstract

We give a necessary and sufficient condition for existence of a controller which decouples the disturbance signal. The condition is based on state space computations. If it is satisfied, we parametrize the set of all disturbance decoupling controllers.

Key words

disturbance decoupling problem generalized inversion 

AMS(MOS) subject classifications

16G70 93B20 93C45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. A. Ball, I. Gohberg and L. Rodman, Interpolation of Rational Matrix Functions, OT 45, Birkhäuser Verlag, Basel Boston Berlin, 1990.zbMATHGoogle Scholar
  2. [2]
    J.A. Ball and M. Rakowski, Zero-Pole Structure of Nonregular Rational Matrix Functions, in Extension and Interpolation of Linear Operators and Matrix Functions, OT 47, Birkhäuser Verlag, Basel Boston Berlin, pp. 137–193, 1990.Google Scholar
  3. [3]
    J.A. Ball and M. Rakowski, Null-Pole Subspaces of Rectangular Rational Matrix Functions, Lin. Alg. AppL, 159 (1991), pp. 81–120.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J.A. Ball and M. Rakowski, Interpolation by rational matrix functions and stability of feedback systems: The 2-block case, J. Math. Systems, Estimation, and Contr., to appear.Google Scholar
  5. [5]
    J.A. Ball and M. Rakowski, Interpolation by rational matrix functions and stability of feedback systems: the 4-blockcase, in Proceedings of Workshop on Operator Theory and Complex Analysis, Hokkaido Univ., 1991, OT 59, Birkhäuser Verlag, Basel, pp. 96–142, 1992.CrossRefGoogle Scholar
  6. [6]
    H. Bart, I. Gohberg and M. A. Kaashoek, Minimal Factorization of Matrix and Operator Functions, OT 1, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1979.zbMATHGoogle Scholar
  7. [7]
    H. Bart, I. Gohberg, M. A. Kaashoek and P. Van Dooren, Factorization of Transfer Functions, SIAM J. Contr. and Opt., 18 (1980), pp. 675–696.CrossRefzbMATHGoogle Scholar
  8. [8]
    A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, John Wiley & Sons, New York London Sydney Toronto, 1974.zbMATHGoogle Scholar
  9. [9]
    S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear Transformations, Dover Press, 1991.zbMATHGoogle Scholar
  10. [10]
    S. L. Campbell and M. Rakowski, Explicit Formulae for Completions of Linear Time-Varying Singular Systems of Differential Equations, Circ., Syst., and Sig. Proc, to appear.Google Scholar
  11. [11]
    N. Cohen, On Spectral Analysis and Factorization of Rational Matrix Functions, Ph.D. Dissertation, Weizmann Institute of Science, Rehovot, Israel, August 1984.Google Scholar
  12. [12]
    G. Conte and A. M. Perdon, On the Causal Factorization Problem, in IEEE Trans. Aut. Contr., AC-30 (1985), pp. 811–813.MathSciNetCrossRefGoogle Scholar
  13. [13]
    G. D. Forney, Jr., Minimal bases of rational vector spaces, with applications to multivariable linear systems, SIAM J. Contr., 13 (1975), pp. 493–520.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    B. Francis, A course in H Control Theory, Springer Verlag, Berlin Heidelberg New York, 1987.CrossRefzbMATHGoogle Scholar
  15. [15]
    I. Gohberg and M. A. Kaashoek, Regular Rational Matrix Functions with Prescribed Pole and Zero Structure, in Topics in Interpolation Theory of Rational Matrix Functions, OT 33, Birkhäuser Verlag, Basel-Boston-Berlin, pp. 109–122, 1988.CrossRefGoogle Scholar
  16. [16]
    J. Hammer and M. Heyman, Causal factorization and linear feedback, SIAM J. Contr. Opt., 19 (1981), pp. 445–468.CrossRefzbMATHGoogle Scholar
  17. [17]
    T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, N. J., 1980.zbMATHGoogle Scholar
  18. [18]
    J. Kim-Kang, Interpolation by Rational Matrix Functions with Minimal McMillan degree, Ph.D. Dissertation, Virginia Tech, Blacksburg, Virginia, April 1990.Google Scholar
  19. [19]
    S. Kung and T. Kailath, Some Notes On Valuation Theory In Linear Systems, Proc. of the 1978 IEEE Conf. on Decision and Control, San Diego, CA, pp. 515–517, 1978.Google Scholar
  20. [20]
    A. F. Monna, Analyse non-archimédienne, Springer-Verlag, Berlin Heidelberg New York, 1970.zbMATHGoogle Scholar
  21. [21]
    D. Y. Ohm, S. P. Bhattacharyya and J. W. Howze, Transfer Function Conditions for (C′, A, B)-pairs, IEEE Trans. Automat. Contr., AC-29 (1984), pp. 172–174.MathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc, 51 (1955), pp. 406–413.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Rakowski, Generalized Pseudoinverses of Matrix Valued Functions, Int. Eq. and Op. Th., 14 (1991), pp. 564–585.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Rakowski, Zero-Defect Generalized Pseudoinverses of Rational Matrix Functions, in Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing I, Mita Press, Tokyo, pp. 197–202, 1992.Google Scholar
  25. [25]
    M. Rakowski, Minimal Factorization of Rational Matrix Functions, IEEE Trans. Circ. and Syst.-I: Fund. Th. Appl., CAS-39 (1992), pp. 440–445.CrossRefGoogle Scholar
  26. [26]
    M. Rakowski, State-Space Solution of the Causal Factorization Problem, IEEE Trans. Aut. Contr., to appear.Google Scholar
  27. [27]
    M. Rakowski, Spectral Factorization of Rectangular Rational Matrix Functions with Application to Discrete Wiener-Hopf Equations, J. Func. Anal., vol. 110 (1992), pp. 410–433.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    H. H. Rosenbrock, State-space and Multivariable Theory, John Wiley & Sons, Inc., New York, 1970.zbMATHGoogle Scholar
  29. [29]
    J. M. Schumacher, Compensator Synthesis Using (C, A, B)-Pairs, IEEE Trans. Automat. Contr., AC-25 (1980), pp. 1133–1138.MathSciNetCrossRefGoogle Scholar
  30. [30]
    J. M. Schumacher, Regulator Synthesis Using (C, A, B)-Pairs, IEEE Trans. Automat. Contr., AC-27 (1982), pp. 1211–1221.MathSciNetCrossRefGoogle Scholar
  31. [31]
    L. M. Silverman, Inversion of Multivariable Linear Systems, IEEE Trans. Auto. Contr., AC-14 (1969), pp. 270–276.CrossRefGoogle Scholar
  32. [32]
    A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Second Edition, John Wiley & Sons, New York Chichester Brisbane Toronto, 1980.zbMATHGoogle Scholar
  33. [33]
    G. Verghese and T. Kailath, Rational Matrix Structure, in Proc. 18 IEEE Conf. on Decision and Contr., Fort Lauderdale, FL, Dec. 12–14, 1979, pp. 10081012.Google Scholar
  34. [34]
    G. Verghese, P. Van Dooren and T. Kailath, Properties of the system matrix of a generalized state-space system, Int. J. of Contr., 30 (1979), pp. 235–243.CrossRefzbMATHGoogle Scholar
  35. [35]
    B. F. Wyman, M. K. Sain, G. Conte and A. M. Perdon, On the Zeros and Poles of a Transfer Function, Lin. Alg. and its Appl., 122/123/124 (1989), pp. 123–144.MathSciNetCrossRefGoogle Scholar
  36. [36]
    G. Verghese, P. Van Dooren and T. Kailath, B. F. Wyman, M. K. Sain, G. Conte and A. M. Perdon, Poles and Zeros of Matrices of Rational Functions, Lin. Alg. and its Appl., 157 (1991), pp. 113–139.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Marek Rakowski
    • 1
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations