Skip to main content

Boundary Value Problems in Semiconductors for the Stationary Vlasov-Maxwell-Boltzmann Equations

  • Conference paper
Semiconductors

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 59))

Abstract

In submicron devices the transport of carriers are govern by the Boltzmann transport equation coupled with electromagnetics. The aim of this paper is to prove the existence of stationary solutions for the corresponding boundary value problems with arbitrary large data. The techniques are those developed by the author for the mathematical analysis of the stationary Vlasov Maxwell system. They are based on the use of upper solutions of the Boltzmann transport equation that give enough a-priori estimates to apply the Schauder fixed-point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximations; application à l’équation de transport, Ann. Sci de l’Ec. Norm. Sup., 4e série, 3 (1970), pp. 185–233.

    MathSciNet  MATH  Google Scholar 

  2. J.S. Blakemore, Semiconductor statistics, Dover, New York, 1987.

    Google Scholar 

  3. P. Degond, F. Poupaud, B. Niclot and F. Guyot, Semiconductor modelling via the Boltzmann equation, Lectures in Appl. Math., 25, AMS, Providence, Rhode Island, (1990), pp. 51–73.

    Google Scholar 

  4. P. Degond and P.-A. Raviart, An asymptotic analysis of the Darwin model of approximation to Maxwell’s equations, Forum Math. (to appear).

    Google Scholar 

  5. R.J. Diperna and P.L. Lions, On the Cauchy problem for the Boltzmann equation: global existence and weak stability, Ann. of Math., 130 (1989), pp. 321–366.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.J. Diperna and P.L. Lions, Global weak solutions of Vlasov-Maxwell systems, Com. on Pure and Appl. Math., XLII (1989), pp. 729–757.

    Google Scholar 

  7. R.J. Diperna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), pp. 511–547.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 88 (1988), pp. 110–125.

    Article  MathSciNet  Google Scholar 

  9. C. Greencard and P.A. Raviart, A boundary value problem for the stationary Vlasov-Poisson system: the plane diode, Com. on Pure and Appl. Math., XLII (1990), pp. 473–507.

    Google Scholar 

  10. P.A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor equations, Springer, Vienna, 1990.

    Book  MATH  Google Scholar 

  11. M. Mock, An initial value problem from semiconductor device theory, SIAM J. of Math. Anal., 5 (1974), pp. 597–612.

    Article  MathSciNet  MATH  Google Scholar 

  12. F.J. Mustieles, Global existence of solution for a system of nonlinear Boltzmann equations of semiconductor physics, Math. Meth. in the Appl. Sci., 14 (1991), pp. 107–121.

    Article  MathSciNet  Google Scholar 

  13. F. Poupaud, On a system of nonlinear Boltzmann equations of semiconductor physics, SIAM J. on Appl. Math., 50 (1990), pp. 1593–1606.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Poupaud, Solutions stationnaires des equations de Vlasov-Poisson, C.R. Acad. Sci. Paris, série I, 311 (1990), pp. 307–312.

    MathSciNet  Google Scholar 

  15. F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system, Forum Math. (to appear).

    Google Scholar 

  16. F. Poupaud and C. Schmeiser, Charge transport in semiconductors with degeneracy effects, Math. Meth. in the Appl. Sci., 14 (1991), pp. 301–318.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Reggiani (ed.), Hot-electron transport in semiconductors, Topics in Appl. Phys., 58, Springer-Verlag, Berlin, Heidelberg, 1985.

    Google Scholar 

  18. T.I. Seidman, The transient semiconductor problem with generation terms, Lectures in Appl. Math., 25, AMS, Providence, Rhode Island (1990), pp. 75–87.

    Google Scholar 

  19. S.M. Sze, Physics of semiconductor devices, J. Wiley and sons, New York, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Poupaud, F. (1994). Boundary Value Problems in Semiconductors for the Stationary Vlasov-Maxwell-Boltzmann Equations. In: Coughran, W.M., Cole, J., Lloyd, P., White, J.K. (eds) Semiconductors. The IMA Volumes in Mathematics and its Applications, vol 59. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8410-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8410-6_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8412-0

  • Online ISBN: 978-1-4613-8410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics