Skip to main content

Discretization of Three Dimensional Drift-Diffusion Equations by Numerically Stable Finite Elements

  • Conference paper
Semiconductors

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 59))

  • 399 Accesses

Abstract

Many of the commonly employed discretizations of the drift-diffusion current continuity equations (including the Scharfetter-Gummel perpendicular bisector box-method discretization) can be expressed in terms of the Slotboom variables ν and ω. The exponential upwinding techniques, which are usually included, bring the drift-diffusion current continuity equations in terms of the Slotboom variables in self-adjoint form.

The piecewise linear finite element approximation which solves Galerkin’s equations is shown to be maximum stable for mixed Neumann-Dirichlet boundary conditions in two and three dimensions, even if no discrete extrema principles prevail. For the Delaunay triangulation in two dimensions, and the Delaunay tetrahedryzation in three dimensions, the box method discretization based on perpendicular bisectors yields a discretized system with extrema principles for the Slotboom variables. Box methods can be considered as Petrov-Galerkin methods for a piecewise linear approximation with piecewise constant test-functions.

Petrov-Galerkin finite element error analysis requires demonstration of an appropriate inf-sup condition. Complications arise in demonstrating this condition because piecewise constant test-functions are not of H 1 regularity. These complications can be circumvented by approximating the piecewise constant test functions by continuous piecewise polynomial test functions. The box-method for a piecewise linear approximation function need not generate a system of linear equations which is identical to Galerkin’s equations. Nevertheless, under rather general conditions, the piecewise linear approximation that is obtained by the box-method realizes the same order of accuracy as the solution to Galerkin equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robert A. Adams. Sobolev Spaces. Academic Press, New York, San Fransisco, London, 1975.

    MATH  Google Scholar 

  2. I. Babuška and A.K. Aziz. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differentiqal Equations. Academic Press, New York, San Fransisco, London, 1972.

    Google Scholar 

  3. Randolph E. Bank and Donald J. Rose. Some Error Estimates for the Box Method. SIAM J. on Numer. Anal., 24:777–787, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  4. Randolph E. Bank, Donald J. Rose, and Wolfgang Fichtner. Numerical Methods for Semiconductor Device Simulation. SIAM J. on Scient. and Statist. Comp., 4(3):416–435, September 1983.

    Article  MathSciNet  MATH  Google Scholar 

  5. Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford, 1978.

    MATH  Google Scholar 

  6. B. Delaunay. Sur La Sphére Vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7(6):792–800, 1932.

    Google Scholar 

  7. David P. Dobkin and Michael J. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. Algorithmica, 4:3–32, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. Herbert Edelsbrunner. The Computational Geometry Column. Buletin of the EATCS, 37:109–116, 1988.

    Google Scholar 

  9. Herbert Edelsbrunner. Spatial Triangulations with Dihedral Angle Conditions. In Proc. Int. Workshop on Discrete Algorithms and Complexity, pages 83–89, 1989.

    Google Scholar 

  10. David Gilbarg and Neil S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, Berlin, 1983.

    MATH  Google Scholar 

  11. L.J. Guibas and J. Stolfi. Primitives for Manipulation of General Subdivisions and the Computation of Voronoi Diagrams. ACM Transactions on Graphics, 4(2):74–123, April 1985.

    Article  MATH  Google Scholar 

  12. W. Hackbusch. On First and Second Order Box Schemes. Computing, 41:277–296, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.D. Jackson. Classical Electrodynamics 2nd edition. John Wiley and Sons, New York, 1974.

    Google Scholar 

  14. Joseph W. Jerome. Consistency of Semiconductor Modelling: An Existence/Stability Analysis for the Stationary van Roosbroeck System. SIAM J. Appl. Math., 45(4):565–590, August 1985.

    Article  MathSciNet  MATH  Google Scholar 

  15. Joseph W. Jerome and Thomas Kerkhoven. A Finite Element Approximation Theory For The Drift Diffusion Semiconductor Model. SIAM J. on Appl. Math., 28:403–422, April 1991.

    MathSciNet  MATH  Google Scholar 

  16. Joseph W. Jerome and Thomas Kerkhoven. The Steady State Drift-Diffusion Semiconductor Model. SIAM, Philadelphia, 1992.

    Google Scholar 

  17. Barry Joe. Construction of Three-Dimensional Delaunay Triangulations Using Local Transformations. Computer Aided Geometric Design, 8:123–142, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  18. Thomas Kerkhoven. Piecewise Linear Finite Element Approximations And The Box Method. Technical report, University of Illinois, in preparation.

    Google Scholar 

  19. Thomas Kerkhoven and Joseph W. Jerome. L Stability of Finite Element Approximations to Elliptic Gradient Equations. Numerische Mathematik, 57:561–575, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  20. M.A. Krasnosel’skii, G.M. Vainikko, P.P. Zabreiko, Ya.B. Rutitskii, and V.Ya. Stetsenko. Approximate Solution of Operator Equations. Wolters-Noordhoff, Groningen, 1972.

    Google Scholar 

  21. C.L. Lawson. Software for C 1 Function Interpolation. In J.R. Rice, editor, Mathematical Software III, pages 161–194, New York, 1977. Academic Press.

    Google Scholar 

  22. Peter A. Markowich. The Stationary Semiconductor Device Equations. Springer-Verlag, Wien, New York, 1986.

    Google Scholar 

  23. Alfred Schatz and Lars B. Wahlbin. On the Quasi Optimality in L of the H 1-projection into Finite Element Spaces. Match. Comp., 38:1–22, 1982.

    MathSciNet  MATH  Google Scholar 

  24. Thomas I. Seidman. Steady State Solutions of Diffusion-Reaction Systems with Electrostatic Convection. Nonlinear Analysis. Theory, Methods and Applications, 4:623–637, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  25. S.M. Sze. Physics of Semiconductor Devices. Wiley-Interscience, New York, second edition, 1981.

    Google Scholar 

  26. R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Kerkhoven, T. (1994). Discretization of Three Dimensional Drift-Diffusion Equations by Numerically Stable Finite Elements. In: Coughran, W.M., Cole, J., Lloyd, P., White, J.K. (eds) Semiconductors. The IMA Volumes in Mathematics and its Applications, vol 59. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8410-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8410-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8412-0

  • Online ISBN: 978-1-4613-8410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics