Skip to main content

Spatial Simulation of Fire Regime in Mediterranean-Climate Landscapes

  • Chapter
The Role of Fire in Mediterranean-Type Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 107))

Abstract

The kind of fire history that characterizes an area can be termed its fire regime, the elements of which are fire type and intensity, size, return interval, and spatial pattern. Fire regime plays a major role in determining regional patterns of species distributions, vegetation patterns and fluxes of matter and energy (Kilgore 1981; Johnson 1979; Knight 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albinet, G., Searby, G., Stauffer, D. 1986. Fire propagation in a 2-D random medium. Le Journal de Physique 47: 1–7.

    Article  Google Scholar 

  • Albini, F.A. 1976. Estimating wildfire behavior and effects. USDA Forest Service General Technical Report INT-30. Inter-Mountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Albini, F.A. 1979. Spotfire distances from burning trees - a predictive model. USDA Forest Service General Technical Report INT-268. Inter-Mountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Albini, F.A., Baughman, R.G. 1979. Estimating windspeeds for predicting wild-land fire behavior. USDA Forest Service Research Paper INT-221. Inter-Mountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Anderson, H.E. 1983. Predicting wind-driven fire size and shape. USDA Forest Service Research Paper INT-305. Inter-Mountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Baker, D.G. 1983. Shapes of simulated fires in discrete fuels. Ecological Modeling 20: 21–32.

    Article  Google Scholar 

  • Baker, W.L. 1989a. Effect of scale and spatial heterogeneity on fire-interval distributions. Canadian Journal of Forest Research 19: 700–706.

    Article  Google Scholar 

  • Baker, W.L. 1989b. Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota. Ecology 70: 23–35.

    Article  Google Scholar 

  • Bradshaw, L.S., Deeming, J.E., Burgan, R.E., Cohen, J.D. 1983. The 1978 National Fire Danger Rating System: Technical documentation. USDA Forest Service General Technical Report INT-169. Inter-Mountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Burgan, R.E., Shasby, M.B. 1984. Mapping broad-area fire potential from digital fuel, terrain, and weather data. Journal of Forestry 82: 228–231.

    Google Scholar 

  • Burrough, P.A. 1986. Principles of geographic information systems for land resources assessment. Clarendon Press, Oxford, England.

    Google Scholar 

  • Burrows, D.A. 1987. The REFIRES (Regional Fire Regime Simulation) model: A C program for regional fire regime simulation. Unpublished M.A. thesis, University of California, Santa Barbara.

    Google Scholar 

  • Byrne, R., Michaelsen, J., Soutar, A. 1977. Fossil charcoal as a measure of wildfire frequency in southern California: a preliminary analysis, pp. 361–367. In H.A. Mooney and C.E. Conrad (eds.), Proceedings of the Symposium on the consequences of fire and fuel management in Mediterranean Ecosystems, Palo Alto, California. US Forest Service General Technical Report WO-3. Washington, DC.

    Google Scholar 

  • Chuvieco, A.E., Congalton, R.G. 1988. Mapping and inventory of forest fires from digital processing of TM data. Geocarto International 4: 41–53.

    Article  Google Scholar 

  • Chuvieco, E., Congalton, R.G. 1989. Application of remote sensing and geographic information systems to forest hazard mapping. Remote Sensing of Environment 29: 147–159.

    Article  Google Scholar 

  • Cosentino, M.J., Woodcock, C.E., Franklin, J. 1981. Scene analysis for wildland fire, pp. 635–646. In Proceedings of the Fifteenth International Symposium on Remote Sensing of Environment. Environmental Research Institute of Michigan, Anne Arbor, MI.

    Google Scholar 

  • Davis, F.W., Hickson, D.E., Odion, D.C. 1988. Composition of maritime chaparral related to fire history and soil, Burton Mesa, Santa Barbara County, California. Madrono 35: 169–195.

    Google Scholar 

  • Davis, F.W., Borchert, M.I., Odion, D.C. 1989. Establishment of microscale pattern in maritime chaparral after fire. Vegetatio 84: 53–67.

    Article  Google Scholar 

  • Deeming, J.E., Burgan, R.E., Cohen, J.D. 1977. The National Fire Danger-Rating System - 1978. USDA Forest Service General Technical Report INT-82. Intermountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Frandsen, W.H., Andrews, P.L. 1979. Fire behavior in non-uniform fuels. USDA Forest Service Research Paper INT-232. Inter-Mountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Gibson, L.D., Lenzmeier, C. 1981. A hierarchical pattern extraction system for hexagonally sampled images. US Air Force Office of Scientific Research Report No. AFOSR-TR-81–0845. Interactive Systems Corporation.

    Google Scholar 

  • Gibson, L.D., Lucas, D. 1982. Vectorization of raster images using hierarchical methods. Computer Graphics and Image Processing 20: 82–89.

    Article  Google Scholar 

  • Green, D.G. 1983. Shapes of simulated fires in discrete fuels. Ecological Modelling 20: 21–32.

    Article  Google Scholar 

  • Green, D.G. 1989. Simulated effects of fire, dispersal, and spatial pattern on competition within forest mosaics. Vegetatio 82: 139–153.

    Article  Google Scholar 

  • Green, D.G., Gill, A.M., Noble, I.R. Fire shapes and the adequacy of fire-spread models. Ecological Modelling 20: 33–45.

    Google Scholar 

  • Hanes, T.L. 1971. Succession after fire in the chaparral of southern California. Ecological Monographs 41: 27–51.

    Article  Google Scholar 

  • Heinselman, M.L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quaternary Research 3: 329–382.

    Article  Google Scholar 

  • Horton, J.S., Kraebel, C.J. 1955. Development of vegetation after fire in the chamise chaparral of southern California. Ecology 36: 244–262.

    Article  Google Scholar 

  • Jakubauskis, M.E., Lulla, K.P., Mausel, P.W. 1990. Assessment of vegetation change in a fire-altered forest landscape. Photogrammetric Engineering and Remote Sensing 56: 371–377.

    Google Scholar 

  • Johnson, E.A. 1979. Fire recurrence in the subarctic and its implications for vegetation composition. Canadian Journal of Botany 57: 1374–1379.

    Article  Google Scholar 

  • Johnson, E.A., Fryer, G.I. 1987. Historical vegetation change in the Kananaskis Valley, Canadian Rockies. Canadian Journal of Botany 65: 853–858.

    Article  Google Scholar 

  • Johnson, E.A., Van Wagner, C.E. 1985. The theory and use of two fire history models. Canadian Journal of Forest Research 15: 214–220.

    Article  Google Scholar 

  • Keane, R.E., Arno, S.K., Brown, J.K. 1990. Simulating cumulative effects in Ponderosa pine/Douglas fir forests. Ecology 71: 189–203.

    Article  Google Scholar 

  • Kilgore, B.M. 1981. Fire in ecosystem distribution and structure, pp. 58–59. In H.A. Mooney et al. (eds.), Proceedings of the Conference on Fire Regimes and Ecosystem Properties. US Forest Service General Technical Report WO-26. Washington, DC.

    Google Scholar 

  • Knight, D.H. 1987. Parasites, lightning, and the vegetation mosaic in wilderness landscapes, pp. 59–83. In M.G. Turner (ed.), Landscape heterogeneity and disturbance. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Lowell, K.E., Astroth, J.H. 1989. Vegetative succession and controlled fire in a glades ecosystem. International Journal of Geographic Information Systems 3: 69–81.

    Article  Google Scholar 

  • Lu, J., Bomba, P., Kind, T. 1990. A microcomputer-based geographic information system for forest fire management, pp. 180–192. Technical Papers of the 50th Annual Convention of the American Society for Photogrammetry and Remote Sensing, Denver, Colorado.

    Google Scholar 

  • Malanson, G.P. 1984. Fire history and patterns of California coastal sage scrub. Vegetatio 57: 121–128.

    Article  Google Scholar 

  • Minnich, R.A. 1983. Fire mosaics in southern California and northern Baja California. Science 219: 1287–1294.

    Article  CAS  Google Scholar 

  • Minnich, R.A. 1987. Fire behavior in southern California chaparral before fire control: The Mount Wilson burns at the turn of the century. Annals of the Association of American Geographers 77: 599–618.

    Article  Google Scholar 

  • Naveh, Z., Whittaker, R.H. 1979. Structural and floristic diversity of shrublands and woodlands in northern Israel and other Mediterranean areas. Vegetatio 41: 171–190.

    Article  Google Scholar 

  • Ogden, G.L. 1975. Differential responses of two oak species to far inland advection of sea-salt spray aerosol. Unpublished Ph.D. dissertation, University of California, Santa Barbara.

    Google Scholar 

  • Parsons, D.J. 1976. The role of fire in natural communities: an example from the southern Sierra Nevada, California. Environmental Conservation 3: 91–99.

    Article  Google Scholar 

  • Rothermel, R.C. 1972. A mathematical model for predicting fire spread in wild-land fuels. USDA Forest Service Research Paper INT-115. Inter-Mountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Rothermel, R.C., Philpot, C.W. 1973. Predicting changes in chaparral flammability. Journal of Forestry 71: 640–643.

    Google Scholar 

  • Rundel, P.W., Parsens, D.J. 1979. Structural changes in chamise (Adenostema fasciculation) along a fire-induced age gradient. Journal of Range Management 32: 462–486.

    Article  Google Scholar 

  • Sadar, S.A., Linden, D.S., McGuire, M. 1982. Fuels mapping from Landsat imagery and digital terrain data and fire suppression decisions, pp. 345–351. Proceedings of the American Congress of Survey and Mapping, Fort Lauderdale, Florida.

    Google Scholar 

  • Shasby, M.B., Burgan, R.E., Johnson, G.R. 1981. Broad area Forest and topography mapping using digital Landsat and terrain data, pp. 529–537. Proceedings of the Seventh Symposium on Machine Processing of Remotely Sensed Data, Purdue University.

    Google Scholar 

  • Sweeney, J.R. 1956. Responses of vegetation to fire. University of California Publications in Botany 28: 143–216.

    Google Scholar 

  • Trabaud, L., Lepart, J. 1980. Diversity and stability in garrigue ecosystems after fire. Vegetatio 43: 49–57.

    Article  Google Scholar 

  • Turner, M.G. 1989. Landscape ecology: The effect of pattern on process. Annual Review of Ecology and Systematics 20: 171–197.

    Article  Google Scholar 

  • Turner, M.G., Gardiner, R.H., Dale, V.H., O’Neill, R.V. 1989. Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55: 121–129.

    Article  Google Scholar 

  • Turner, M.G., Romme, W.H. 1990. Landscape dynamics in crown fire ecosystems. In R.D. Raven and P.N. Omi (eds.), Pattern and Process in Crown Fire Ecosystems. Princeton University Press. Princeton, NJ.

    Google Scholar 

  • Van Wagner, C.E. 1978. Age-class distribution and the forest fire cycle. Canadian Journal of Forest Research 7: 23–34.

    Article  Google Scholar 

  • Van Wagtendtonk, J.W. 1985. Fire suppression effects on fuels and succession in short-fire-interval wilderness ecosystems, pp. 119–126. In J.E. Lotan, B.M. Kilgore, W.C. Fischer, and R.W. Mutch (Technical Coordinators), Proceedings of the Symposium and Workshop on Wilderness Fire. USDA Forest Service General Technical Report INT-182. Inter-Mountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Yool, S.R., Eckhardt, D.W., Estes, J.E., Cosentino, M.J. 1985. Describing the brushfire hazard in southern California. Annals of the Association of American Geographers 75: 417–430.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Davis, F.W., Burrows, D.A. (1994). Spatial Simulation of Fire Regime in Mediterranean-Climate Landscapes. In: Moreno, J.M., Oechel, W.C. (eds) The Role of Fire in Mediterranean-Type Ecosystems. Ecological Studies, vol 107. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8395-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8395-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8397-0

  • Online ISBN: 978-1-4613-8395-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics