Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

Abstract

Microemulsions were discovered about 40 years ago [1]. Since that time many experiments have been performed to determine their structures [2–16]. We aim in this chapter to discuss the main results in connection with the theoretical ideas to be presented in the following ones (see Chaps. 8 and 9). We pursue in particular a description of microemulsions as phases of flexible interfacial film of surfactant [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. P. Hoar and J. H. Schulman, Nature 102, 152 (1943).

    Google Scholar 

  2. J. H. Schulman and D. P. Riley, J. Colloid Sci. 3, 383 (1948).

    Article  Google Scholar 

  3. J. H. Schulman and J. A. Friend, J. Colloid Sci. 4, 497 (1949).

    Article  Google Scholar 

  4. K. Shinoda and S. Friberg, Adv. Colloid Interface Sci. 4, 281 (1975).

    Article  Google Scholar 

  5. Microemulsions, Theory and Practice, L. M. Prince, ed. ( Academic Press, New York, 1977 ).

    Google Scholar 

  6. Micellization, Solubilisation and Microemulsions, K. L. Mittal, ed. ( Plenum Press, New York, 1977 ).

    Google Scholar 

  7. P. G. de Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).

    Article  Google Scholar 

  8. Surfactants in Solutions, vol. 1–3, K. L. Mittal and B. Lindman, eds. ( Plenum Press, New York, 1984 ).

    Google Scholar 

  9. A. M. Bellocq, J. Biais, P. Bothorel, B. Clin, G. Fourche, P. Lalanne, B. Lamaire, B. Lamanceau and D. Roux, Adv. Colloid Interface Sci. 20, 167 (1984).

    Article  Google Scholar 

  10. Colloides et Interfaces, A. M. Cazabat and M. Veyssié, eds., Les Editions de Physique, 1984.

    Google Scholar 

  11. Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, M. Corti and V. de Giorgio, eds. (North Holland, 1985 ).

    Google Scholar 

  12. Surfactants in Solutions, vol. 4–6, K. L. Mittal and P. Bothorel, eds. (Plenum Press, 1986 ).

    Google Scholar 

  13. Physics of Complex and Supramolecular Fluids, S. A. Safran and N. A. Clark, eds. ( Wiley, New York, 1987 ).

    Google Scholar 

  14. Microemulsion Systems, H. L. Rosano and M. Clausse, eds., Surfactant Science Series, Vol. 24 ( Marcel Dekker, New York, 1987 ).

    Google Scholar 

  15. Physics of Amphiphilic Layers, J. Meunier, D. Langevin and N. Boccara, eds. ( Springer, Heidelberg, 1987 ).

    Google Scholar 

  16. Microemulsions: Structure and Dynamics, S. E. Friberg and P. Bothorel, eds. (CRC Press, 1987 ).

    Google Scholar 

  17. S. A. Safran, J. Chem. Phys. 78, 2073 (1983).

    Article  ADS  Google Scholar 

  18. W. G. M. Agterhof, J. A. J. van Zomeren and A. Vrij, Chem. Phys. Lett. 43, 363 (1976).

    Article  ADS  Google Scholar 

  19. W. Helfrich, Z. Naturforsch. C 28, 693 (1973).

    Google Scholar 

  20. Y. Talmon and S. Prager, J. Chem. Phys. 69, 2984 (1978).

    Article  ADS  Google Scholar 

  21. P. G. de Gennes, J. Jouffroy and P. Levinson, J. de Physique 43, 1241 (1982).

    Google Scholar 

  22. L. E. Scriven, Nature 63, 123 (1976).

    Article  ADS  Google Scholar 

  23. L. E. Scriven, in [5], vol. 2, p. 877.

    Google Scholar 

  24. Surfactant Solutions: New Methods of Investigation, R. Zana, ed., Surfactant Science Series, Vol. 22 ( Marcel Dekker, New York, 1987 ).

    Google Scholar 

  25. J. Dubochet, M. Adrian, J. Teixeira, C. Alba, R. K. McFarlane and C. A. Angell, J. Phys. Chem. 88, 6727 (1984).

    Article  Google Scholar 

  26. W Jahn and R. Strey, in [14], p. 353.

    Google Scholar 

  27. Th. Zemb, S. T. Hyde, P. J. Derian, I. S. Barnes and B. W. Ninham, J. Phys. Chem. 91, 3814 (1987).

    Article  Google Scholar 

  28. J. Biais, B. Clin and P. Lalanne, in [15], p. 1.

    Google Scholar 

  29. Nonionic Surfactants: Physical Chemistry, M. J. Schick, ed., Surfactant Science Series, Vol. 23 ( Marcel Dekker, New York, 1987 ).

    Google Scholar 

  30. L. Auvray, J. P. Cotton, R. Ober and C. Taupin, J. de Physique 45, 913 (1984).

    Google Scholar 

  31. J. H. Schulman, J. B. Montague, Ann. N. Y. Acad. Sci. 92, 366 (1961).

    Article  ADS  Google Scholar 

  32. L. Auvray, J. P. Cotton, R. Ober and C. Taupin, J. Phys. Chem. 88, 4586 (1984).

    Article  Google Scholar 

  33. G. Porod, Koll. Z. 124, 83 (1951).

    Article  Google Scholar 

  34. J. M. de Meglio, M. Dvolaitzky and C. Taupin, J. de Physique Lett. 44, L-229 (1983).

    Google Scholar 

  35. J. M. di Meglio, M. Dvolaitzky and C. Taupin, J. Phys. Chem. 89, 871 (1985).

    Article  Google Scholar 

  36. J. M. di Meglio, M. Dvolaitzky and C. Taupin, in [14], p. 199.

    Google Scholar 

  37. J. M. di Meglio, M. Dvolaitzky, L. Léger and C. Taupin, Phys. Rev. Lett. 56, 1686 (1985).

    Article  Google Scholar 

  38. C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark and A. M. Bellocq, Phys. Rev. Lett. 57, 2718 (1986).

    Article  ADS  Google Scholar 

  39. J. C. Ravey, M. Buzier and G. Dupont, in [14], p. 163.

    Google Scholar 

  40. S. Safran, L. Turkevich and P. Pincus, J. de Physique Lett. 45, L-69 (1984).

    Article  Google Scholar 

  41. G. Porte, J. Appell and Y. Poggi, J. Phys. Chem. 84, 3105 (1980).

    Article  Google Scholar 

  42. S. J. Candau, F. Hirsch and R. Zana, in [13], p. 569.

    Google Scholar 

  43. M. Dvolaitzsky, M. Lagúes, J. P. Lepesant, R. Ober, C. Sauterey and C. Taupin, J. Phys. Chem. 84, 1532 (1980).

    Article  Google Scholar 

  44. M. Kotlarchyk, S. H. Chen and J. S. Huang J. Phys. Chem. 86, 3273 (1982).

    Article  Google Scholar 

  45. M. Kotlarchyk, S. H. Chen and J. S. Huang J. Chem. Phys. 79, 2461 (1983).

    Article  ADS  Google Scholar 

  46. C. T. Meyer, Y. Poggi and G. Maret, J. de Physique 43, 827 (1982).

    Article  Google Scholar 

  47. J. S. Huang, S. T. Milner, B. Fargo and D. Richter, Phys. Rev. Lett. 59, 2600 (1987).

    Article  ADS  Google Scholar 

  48. R. Ober and C. Taupin, J. Phys. Chem. 84, 2418 (1980).

    Article  Google Scholar 

  49. A. M. Cazabat, in [10], p. 323.

    Google Scholar 

  50. S. Brunetti, D. Roux, A. M. Bellocq, G. Fourche and P. Bothorel, J. Phys. Chem. 87, 1028 (1983).

    Article  Google Scholar 

  51. J. S. Huang, S. A. Safran, W. M. Kim, M. Kotlarchyk and N. Quirke, Phys. Rev. Lett. 53, 592 (1984).

    Article  ADS  Google Scholar 

  52. B. Lamaire, P. Bothorel and D. Roux, J. Phys. Chem. 87, 1023 (1983).

    Article  Google Scholar 

  53. L. A. Turkevich, in [13], p. 241.

    Google Scholar 

  54. L. Auvray, J. de Physique Lett. 46, L-163 (1985).

    Google Scholar 

  55. A. M. Cazabat, D. Chatenay, P. Guering, W. Urbach, D. Langevin and J. Meunier, in [14], p. 183.

    Google Scholar 

  56. P. A. Winsor, Solvent Properties of Amphiphilic Compounds ( Butterworths, London, 1954 ).

    Google Scholar 

  57. M. Laguës, R. Ober and C. Taupin, J. de Physique Lett. 39, 487 (1978).

    Article  Google Scholar 

  58. B. Lindman and P. Stilbs, in [14], p. 129.

    Google Scholar 

  59. B. Lindman and P. Stilbs, in [16], p. 119.

    Google Scholar 

  60. B. Lindman, T. Ahnoläs, O. Söderman, H. Walderhaug, K. Rapacki and P. Stilbs, Faraday Disc. Chem. Soc. 76, 317 (1983).

    Google Scholar 

  61. P. Guérin and B. Lindman, Langmuir 1, 464 (1985).

    Article  Google Scholar 

  62. M. T. Clarkson, D. Beaglehole and M. T. Callaghan, Phys. Rev. Lett. 54, 1722 (1985).

    Article  ADS  Google Scholar 

  63. A. M. Cazabat, D. Langevin, J. Meunier and A. Pouchelon, Adv. Colloid Interface Sci. 16, 175 (1982).

    Article  Google Scholar 

  64. P. Pincus, S. Safran, S. Alexander and D. Hone, in Physics of Finely Divided Matter, N. Boccara and M. Daoud, eds., Springer Proceedings in Physics, vol. 5, 1985.

    Google Scholar 

  65. M. Dvolaitzky, M. Guyot, M. Lagües, J. P. Lepesant, R. Ober, C. Sauterey and C. Taupin, J. Chem. Phys. 69, 3279 (1978).

    Article  ADS  Google Scholar 

  66. M. Kotlarchyk, quoted in S. H. Chen, Ann. Rev. Phys. Chem. 37, 351 (1986).

    Article  Google Scholar 

  67. D. J. Cebula, R. H. Ottewil, J. Ralston and P. N. Pusey, J. Chem. Soc. Faraday Trans. I 77, 2585 (1981).

    Article  Google Scholar 

  68. D. J. Cebula, O. Y. Myers and R. H. Ottewil, Coll. Polym. Sci. 250, 96 (1982).

    Article  Google Scholar 

  69. Improved Oil Recovery by Surfactant and Polymer Flooding, D. O. Shah and R. S. Schechter, eds. ( Academic Press, New York, 1977 ).

    Google Scholar 

  70. K. Shinoda and H. Kunieda, J. Colloid Interface Sci. 42, 381 (1973).

    Article  Google Scholar 

  71. F. Lichterfold, T. Schmeling and R. Strey, J. Phys. Chem. 90, 5762 (1986).

    Article  Google Scholar 

  72. B. Widom, J. Chem. Phys. 81, 1030 (1984).

    Article  ADS  Google Scholar 

  73. D. Andelman, M. E. Cates, D. Roux and S. A. Safran, J. Chem. Phys. 87, 7229 (1987).

    Article  ADS  Google Scholar 

  74. E. W. Kaler and S. Prager, J. Colloid Interface Sci. 86, 359 (1982).

    Article  Google Scholar 

  75. S. T. Milner, S. A. Safran, D. Andelman, M. E. Cates and D. Roux, J. de Physique 49, 1065 (1988).

    Article  Google Scholar 

  76. R. Kirste and G. Porod, Koll. Z. u. Z. für Polym. 184, 1 (1962).

    Article  Google Scholar 

  77. E. W. Kaler, K. E. Bennett, H. T. Davis and L. E. Scriven, J. Chem. Phys. 79, 5673 (1983).

    Article  ADS  Google Scholar 

  78. E. W. Kaler, H. T. Davis and L. E. Scriven, J. Chem. Phys. 79, 5685 (1983).

    Article  ADS  Google Scholar 

  79. A. de Geyer and J. Tabony, Chem. Phys. Lett. 113, 83 (1985).

    Article  ADS  Google Scholar 

  80. A. de Geyer and J. Tabony, Chem. Phys. Lett. 124, 357 (1986).

    Article  ADS  Google Scholar 

  81. J. Tabony and A. de Geyer, in [12], p. 1287.

    Google Scholar 

  82. A. de Geyer and J. Tabony, in [15], p. 372.

    Google Scholar 

  83. D. Guest, L. Auvray and D. Langevin, J. de Physique Lett. 46, L1055 (1985).

    Google Scholar 

  84. L. Auvray, L. P. Cotton, R. Ober and C. Taupin, in [13], p. 449.

    Google Scholar 

  85. N. F. Berk, Phys. Rev. Lett. 58, 2718 (1987).

    Article  ADS  Google Scholar 

  86. M. E. Cates, D. Roux, D. Andelman, S. T. Milner and S. A. Safran, Europhys. Lett. 5, 733 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Auvray, L. (1994). The Structure of Microemulsions: Experiments. In: Gelbart, W.M., Ben-Shaul, A., Roux, D. (eds) Micelles, Membranes, Microemulsions, and Monolayers. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8389-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8389-5_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8391-8

  • Online ISBN: 978-1-4613-8389-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics