Advertisement

Lyotropic Lamellar Lα Phases

  • Didier Roux
  • Cyrus R. Safinya
  • Frederic Nallet
Part of the Partially Ordered Systems book series (PARTIAL.ORDERED)

Abstract

As previous chapters have described, surfactants in solution lead to a large number of fascinating structures, among which are the lyotropic liquid crystal phases [1]. Liquid crystals exhibit long range order: orientational (nematics, see Chap. 3) and positional (lamellar, hexagonal or cubic—see Secs. 1.4.3–4 and Chap. 4). The lamellar phases consist of stacks of surfactant bilayers separated by solvent, usually water. In this chapter we are concerned only with the lamellar L α phase. Figure 6.1 shows a schematic representation of such a structure. There is quasi-long-range positional solid-like order along the direction perpendicular to the layers (which we label as the z-direction): the surfactant density is modulated along the z-direction with a well-defined period, the repeat distance d. In the two other, in-plane, directions (x and y) the system is liquid-like and the solvent and surfactant molecules are free to move in this plane. In general, at lower temperatures the L α phase may undergo a phase transition to the lamellar L β1 ,phases where the surfactant molecules exhibit various degrees of in-plane positional and orientational order [2]. The lamellar L α phase has the symmetry of the smectic A phase encountered in thermotropic liquid crystals [3]; there are nevertheless important reasons for specifically studying such lyotropic smectics. First, their most striking property is that the repeat distance d can be varied continuously, upon addition of an appropriate solvent.

Keywords

Lamellar Phase Concentration Fluctuation Baroclinic Mode Oriented Sample Repeat Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ekwall, in Advances in Liquid Crystals, G. M. Brown, ed. (Academic Press, New York, 1975).Google Scholar
  2. 2.
    a) G. S. Smith, E. B. Sirota, C. R. Safinya and N. A. Clark, Phys. Rev. Lett. 60, 813 (1988)ADSCrossRefGoogle Scholar
  3. b).
    G. S. Smith, E. B. Sirota, C R Safinya, R. J. Plano and N. A. Clark, J. Chem. Phys. 92, 4519 (1990).ADSCrossRefGoogle Scholar
  4. 3.
    P.-G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).Google Scholar
  5. 4.
    a) F. Candau and J. C. Wittmann, Mol. Cryst. Liq. Cryst. 56, 171 (1980)CrossRefGoogle Scholar
  6. b).
    W. J. Benton and C. A. Miller, J. Phys. Chem. 87, 4981 (1983)CrossRefGoogle Scholar
  7. c).
    M. Dvolaitzky, R. Ober, J. Billard, C. Taupin, J. Charvolin and Y. Hendrikx, C. R. Hebd. Acad. Sci. II45, 295 (1981)Google Scholar
  8. d).
    A.-M. Bellocq and D. Roux, Microemulsions: Stucture and Dynamics, S. Friberg and P. Bothorel, eds. (CRC Press, Boca Raton, 1986)Google Scholar
  9. e).
    J.-M. Di Meglio, M. Dvolaitzky and C. Taupin, J. Phys. Chem. 89, 871 (1985).CrossRefGoogle Scholar
  10. 5.
    F. Larché, J. Appell, G. Porte, P. Bassereau and J. Marignan, Phys. Rev. Lett. 56, 1700 (1985).ADSCrossRefGoogle Scholar
  11. 6.
    R. Strey, R. Schomacker, D. Roux, F. Nallet and U. Olsson, J. Chem. Soc. Faraday Trans. 86, 2253 (1990).CrossRefGoogle Scholar
  12. 7.
    a) N. Satoh and K. Tsujii, J. Phys. Chem. 91, 6629 (1987)CrossRefGoogle Scholar
  13. b).
    C. Thunig, H. Hoffmann and G. Platz, Progr. Colloid Polym. Sci. 79, 297 (1989).Google Scholar
  14. 8.
    P. Pieranski, Contemp. Phys. 24, 25 (1983).ADSCrossRefGoogle Scholar
  15. 9.
    a) D. R. Nelson, in Statistical Mechanics of Surfaces and Membranes, D. R. Nelson, T. Piran and S. Weinberg, eds. (World Scientific, 1989)Google Scholar
  16. b).
    F. David, ibid.Google Scholar
  17. c).
    S. Leibler, ibid.Google Scholar
  18. d).
    R. Lipowsky, in Random Fluctuations and Pattern Growth: Experiments and Models, H. E. Stanley and N. Ostrowsky, eds. (Kluwer Academic Publishers, Dordrecht, Boston and London, 1988)Google Scholar
  19. e).
    L. Peliti, ibid.Google Scholar
  20. f).
    D. Roux, ibid.Google Scholar
  21. h).
    F. Pincus, in Phase Transitions in Soft Condensed Matter, T. Riste and D. Sherrington, eds. (Plenum Press, New York and London, 1989)Google Scholar
  22. i).
    C. R. Safinya, ibid.Google Scholar
  23. j).
    M. E. Cates, ibid.Google Scholar
  24. 10.
    S. J. Singer and G. L. Nicolson, Science 175, 720 (1972).ADSCrossRefGoogle Scholar
  25. 11.
    V. Luzzati, in Biological Membranes, D. Chapman, ed. (Academic Press, London and New York, 1968).Google Scholar
  26. 12.
    P.-G. de Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).CrossRefGoogle Scholar
  27. 13.
    C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark and A.-M. Bellocq, Phys. Rev. Lett. 57, 2718 (1986).ADSCrossRefGoogle Scholar
  28. 14.
    G. Porte, R. Gomati, O. El Haitamy, J. Appell and J. Marignan, J. Phys. Chem. 90, 5746 (1986).CrossRefGoogle Scholar
  29. 15.
    P. Bassereau, J. Marignan and G. Porte, J. de Physique 48, 673 (1987).CrossRefGoogle Scholar
  30. 16.
    D. Roux and C. R. Safinya, J. de Physique 49, 307 (1988).CrossRefGoogle Scholar
  31. 17.
    W. Helfrich, Z. Naturforsch 33a, 305 (1978).ADSGoogle Scholar
  32. 18. a.
    a) P. Ekwall, L. Mandell and K. Fontell, J. Colloid Interface Sci. 33, 215 (1970)CrossRefGoogle Scholar
  33. K. Fontell, J. Colloid Interface Sci. 44, 318 (1973).CrossRefGoogle Scholar
  34. 19.
    D. J. Mitchell, G. T. J. Tiddy, L. Warring, Th. Bostock and M. P. McDonald, J. Chem. Soc. Faraday Trans. 79, 975 (1983).CrossRefGoogle Scholar
  35. 20.
    M. Kahlweit, R. Strey and D. Haase, J. Phys. Chem. 89, 163 (1985).CrossRefGoogle Scholar
  36. 21.
    D. Roux and A.-M. Bellocq, in Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, V. Degiorgio and M. Corti, eds. (North-Holland, Amsterdam, 1985).Google Scholar
  37. 22.
    G. Guérin and A.-M. Bellocq, J. Phys. Chem. 92, 2550 (1988).CrossRefGoogle Scholar
  38. 23.
    C. R.Safinya, E. Sirota, D. Roux and G. S. Smith, Phys. Rev. Lett. 62, 1134 (1989).ADSCrossRefGoogle Scholar
  39. 24.
    W. Helfrich, Z. Naturforsch. 28a, 693 (1973).Google Scholar
  40. 25. a.
    a) I. E. Dzyaloshinski, E. M. Lifshitz and L. P. Pitaevskii, Adv. Phys. 10, 165 (1959)ADSCrossRefGoogle Scholar
  41. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, Orlando, 1985).Google Scholar
  42. 26.
    A. C. Cowley, N. L. Fuller, R. P. Rand and V. A. Parsegian, Biochem. 17, 3163 (1978).CrossRefGoogle Scholar
  43. 27.
    S. Engström and H. Wennerström, J. Phys. Chem. 82, 2711 (1978).CrossRefGoogle Scholar
  44. 28. a.
    a) V. A. Parsegian, N. L. Fuller and R. P. Rand, Proc. Natl. Acad. Sci. USA 76, 2750 (1979)ADSCrossRefGoogle Scholar
  45. b) R. P. Rand, Ann. Rev. Biophys. Bioeng. 10, 277 (1981).CrossRefGoogle Scholar
  46. 29.
    W. Helfrich and R. M. Servuss, Il Nuovo Cimento 3, 137 (1984).CrossRefGoogle Scholar
  47. 30.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca and London, 1979).Google Scholar
  48. 31.
    F. Brochard and P.-G. de Gennes, Pramana Suppl. 1, 1 (1975).Google Scholar
  49. 32.
    F. Nallet, D. Roux and J. Prost, J. de Physique 50, 3147 (1989).CrossRefGoogle Scholar
  50. 33.
    F. Nallet, D. Roux and S. T. Milner, J. de Physique 51, 2333 (1990).CrossRefGoogle Scholar
  51. 34. a).
    A. Caillé, C. R. Hebd. Acad. Scien. B274, 891 (1972)Google Scholar
  52. b).
    L. Gunther, Y. Imry and J. Lajzerowicz, Phys. Rev. A22, 1733 (1980).Google Scholar
  53. 35a.
    G. Porte, P. Bassereau, J. Marignan, and R. May, in Physics of Amphiphilic Layers, J. Meunier, D. Langevin and N. Boccara, eds. (Springer-Verlag, Berlin and Heidelberg, 1987)Google Scholar
  54. b) G. Porte, J. Marignan, P. Bassereau and R. May, Europhys. Lett. 7, 713 (1988).ADSGoogle Scholar
  55. 36.
    R. E. Peierls, Annales Inst. Henri-Poincaré 5, 177 (1935); Helv. Phys. Acta Suppl. 7, 81 (1934).Google Scholar
  56. 37.
    L. D. Landau, Phys. Z. Sowjetun. 2, 26 (1937), or in Collected Papers of L. D. Landau, D. Ter Haar, ed. (Gordon and Breach, New York, 1965).Google Scholar
  57. 38.
    P. Dutta, S. K. Sinha, P. Vora, L. Passel and M. Bretz, in Ordering in Two Dimensions, S. K. Sinha, ed. (Elsevier North Holland, Amsterdam, 1982).Google Scholar
  58. 39..
    J. Als-Nielsen, J. D. Litster, R. J. Birgeneau, M. Kaplan, C. R. Safinya, A. Lindegaard-Andersen and S. Mathiesen, Phys. Rev. B22, 312(1980).ADSGoogle Scholar
  59. 40. a.
    ) N. Lei, C. R. Safinya and R. F. Bruinsma, Phys. Rev. Lett. (submitted, 1993)Google Scholar
  60. b).
    ) N. Lei, Y. Shen and C. R. Safinya, in Scaling in Disordered Materials: Fractal Structure and Dynamics (Material Research Society Publishers, Pittsburgh, EA-25, 1990)Google Scholar
  61. c).
    c) E. B. Sirota, G. S. Smith, C. R. Safinya, R. J. Plano and N. A. Clark, Science 242, 1406 (1988).ADSCrossRefGoogle Scholar
  62. 41.
    P. C. Martin, O. Parodi and P. S. Pershan, Phys. Rev. A6, 2401 (1972).ADSGoogle Scholar
  63. 42.
    The permeation is taken explicitly into account by: X. Wen and R. B. Meyer, J. de Physique 50, 3043 (1989).Google Scholar
  64. 43.
    P.-G. de Gennes, J. de Physique Suppl. 30, 65 (1969).Google Scholar
  65. 44.
    C. Y. Young and N. A. Clark, J. Chem. Phys. 74, 4171 (1981).ADSCrossRefGoogle Scholar
  66. 45.
    W. Chan and P. S. Pershan, Phys. Rev. Lett. 39, 1368 (1977).ADSCrossRefGoogle Scholar
  67. 46..
    S. T. Milner, private communication.Google Scholar
  68. 47..
    This property, as well as the continuous connection between the baro-clinic mode and the undulation mode, depend crucially on the assumption that δc is a high frequency mode. This assumption breaks down when the frequency of the membrane peristaltic mode is smaller than the frequency of the undulation mode, i.e., when μB < K/η. In this case, as for one-component smectics, the undulation mode is continuously connected to the second sound mode.Google Scholar
  69. 48..
    For very small repeating distances (d ≈ δ) the membrane thickness d varies with dilution owing to a competition between in-plane surfactant interactions and out-of-plane electrostatic repulsion [1].Google Scholar
  70. 49.
    F. Pincus, J.-F. Joanny and D. Andelman, Europhys. Lett. 11, 763 (1990).ADSCrossRefGoogle Scholar
  71. 50.
    L. Golubovic and T. C. Lubensky, Phys. Rev. B39, 12110 (1989).ADSGoogle Scholar
  72. 51.
    T. C. Lubensky, J. Prost and S. Ramaswamy, J. de Physique 51, 933 (1990).CrossRefGoogle Scholar
  73. 52a.
    J. Als-Nielsen, in Symmetries and Broken Symmetries in Condensed Matter Physics, N. Boccara, ed. (IDSET, Paris, 1981)Google Scholar
  74. b) E. Nachaniel, E. N. Keller, D. Davidov and C. Boeffel, Phys. Rev. A 43, 2995 (1991).Google Scholar
  75. 53.
    R. Lipowsky and S. Leibler, Phys. Rev. Lett. 56, 2561 (1986).ADSCrossRefGoogle Scholar
  76. 54.
    S. Leibler and R. Lipowsky, Phys. Rev. B35, 7004 (1987).ADSGoogle Scholar
  77. 55.a).
    a) Y. Kantor and M. Kardar, Europhys. Lett. 9, 53 (1989)ADSCrossRefGoogle Scholar
  78. b).
    b) J. Toner, Phys. Rev. Lett. 62, 905 (1989).ADSCrossRefGoogle Scholar
  79. 56..
    a) M. B. Schneider, J. T. Jenkins and W. W. Webb, J. de Physique 45, 1457 (1984)CrossRefGoogle Scholar
  80. I. Bivas, P. Hanusse, P. Bothorel, J. Lalanne and O. Aguerre-Charriol, J. de Physique 46, 855 (1987).CrossRefGoogle Scholar
  81. 57.
    G. S. Smith, C. R. Safinya, D. Roux and N. A. Clark, Mol. Cryst. Liq. Cryst. 144, 235 (1987).CrossRefGoogle Scholar
  82. 58.
    E. A. Evans, Biophys. J. 14, 923 (1974).CrossRefGoogle Scholar
  83. 59.
    A. G. Petrov and I. Bivas, Prog. Surf. Sci. 16, 389 (1984).ADSCrossRefGoogle Scholar
  84. 60..
    a) R. Cantor, Macromolecules 14, 1186 (1981)ADSCrossRefGoogle Scholar
  85. S. T. Milner and T. A. Witten, J. de Physique 49, 1951 (1988).CrossRefGoogle Scholar
  86. 61.
    I. Szleifer, D. Kramer, A. Ben-Shaul, D. Roux and W. Gelbart, Phys. Rev. Lett. 60, 1966 (1988).ADSCrossRefGoogle Scholar
  87. 62.
    F. Nallet, D. Roux and J. Prost, Progr. Colloid Polym. Sci. 79, 313 (1989).Google Scholar
  88. 63.
    F. Nallet, D. Roux and J. Prost, Phys. Rev. Lett. 62, 276 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Didier Roux
    • 1
  • Cyrus R. Safinya
    • 2
  • Frederic Nallet
    • 1
  1. 1.Centre de recherche Paul-Pascal, CNRSPessacFrance
  2. 2.Materials and Physics DepartmentsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations