Human Chorionic Gonadotropin: Progress in Determining Its Tertiary Structure

  • Joyce W. Lustbader
  • Chuan Wang
  • Xiaolu Zhang
  • Steven Birken
  • Hao Wu
  • Jonathan Miles Brown
  • David Yarmush
  • Susan Pollak
  • Robert E. Canfield
Conference paper
Part of the Serono Symposia USA book series (SERONOSYMP)


In humans, maintenance of pregnancy requires extending the lifetime of the corpus luteum, which produces essential steroids. The signal for this maintenance is provided by human chorionic gonadotropin (hCG), a dimeric glycoprotein hormone produced by the trophoblast cells of the early embryo. The absence of hCG would result in rapid termination of early pregnancy.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Human Chorionic Gonadotropin Nuclear Magnetic Resonance Spectroscopy Hydrogen Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris DC, Machin KJ, Evin GM, Morgan FJ, Isaacs NW. Preliminary X-ray diffraction analysis of human chorionic gonadotropin. J Biol Chem 1989; 264: 6705–6.PubMedGoogle Scholar
  2. 2.
    Lustbader JW, Birken S, Pileggi NF, et al. Crystallization and characterization of human chorionic gonadotropin in chemically deglycosylated and enzymatically desialylated states. Biochem 1989; 28: 9239–43.CrossRefGoogle Scholar
  3. 3.
    Lustbader JW, Yarmush DL, Birken S, Puett D, Canfield RE. The application of chemical studies of human chorionic gonadotropin to visualize its three-dimensional structure. Endocr Rev 1993; 14: 1–21.Google Scholar
  4. 4.
    Katz L, Levinthal C. Interactive computer graphics and representation of complex biological structures. Annu Rev Biophys Bioeng 1972; 1: 465–504.PubMedCrossRefGoogle Scholar
  5. 5.
    Moyle WR, Matzuk MM, Campbell RK, et al. Localization of residues that confer antibody binding specificity using human chorionic gonadotropin/luteinizing hormone β subunit chimeras and mutants. J Biol Chem 1990; 265: 8511–8.PubMedGoogle Scholar
  6. 6.
    Willey KP, Leidenberger F. Functionally distinct agonist and receptor-binding regions in human chorionic gonadotropin. J Biol Chem 1989; 264: 19716–29.PubMedGoogle Scholar
  7. 7.
    Mise T, Bahl OP. Assignment of disulfide bonds in the beta subunit of human chorionic gonadotropin. J Biol Chem 1981; 256: 6587–92.PubMedGoogle Scholar
  8. 8.
    Mise T, Bahl OP. Assignment of disulfide bonds in the alpha subunit of human chorionic gonadotropin. J Biol Chem 1980; 255: 8516–22.PubMedGoogle Scholar
  9. 9.
    Puett D, Birken S. Helix formation in reduced S-carboxymethylated human choriogonadotropin β subunit and tryptic peptides. J Protein Chem 1989; 8: 779–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Reddy VB, Beck AK, Garramone AJ, Vellucci V, Lustbader J, Bernstine EG. Expression of human choriogonadotropin in monkey cells using a single simian virus 40 vector. Proc Natl Acad Sci USA 1985; 82: 3644–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Lustbader J, Birken S, Pollak S, et al. Characterization of the expression products of recombinant human choriogonadotropin and subunits. J Biol Chem 1987; 262: 14204–12.PubMedGoogle Scholar
  12. 12.
    Matthews BW. Solvent content of protein crystals. J Mol Biol 1968; 33: 491–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Watenpaugh KD. Overview of phasing by isomorphous replacement. Methods Enzymol 1985; 115: 3–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Hendrickson WA. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 1991; 254: 51–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Hendrickson WA, Smith JL, Sheriff S. Direct phase determination based on anomalous scattering. Methods Enzymol 1985; 115: 41–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Leahy DJ, Hendrickson WA, Aukhil I, Erickson HP. Structure of a fibronectin type III domain from Tenascin phased by MAD analysis of the selenomethionyl protein. Science 1992; 258: 987–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 1991; 254: 1608–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang W, Hendrickson WAS, Crouch RJ, Satow Y. Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science 1990; 249: 1398–405.PubMedCrossRefGoogle Scholar
  19. 19.
    Graves BJ, Hatada MH, Hendrickson WA, Miller JK, Madison VS, Satow Y. Structure of interleukin 1 A at 2.7 A resolution. Biochemistry 1990; 29: 2679–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Guss JM, Merritt EA, Phizackerley RP, et al. Phase determination by multiple-wavelength x-ray diffraction: crystal structure of a basic “blue” copper protein from cucumbers. Science 1988; 241: 806–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Hendrickson WA, Horton JR, LeMaster DM. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J 1990; 9: 1665–72.PubMedGoogle Scholar
  22. 22.
    Cowie DB, Cohen GN. Biochim Biophys Acta 1957; 26: 252–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Ernst RR, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Oxford Science Publications, 1986.Google Scholar
  24. 24.
    Wuthrich K. NMR of proteins and nucleic acids. New York: Wiley, 1986.Google Scholar
  25. 25.
    Markley JL. Two-dimensional nuclear magnetic resonance spectroscopy of proteins: an overview. Methods Enzymol 1989; 176: 12–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Clore GM, Gronenborn AM. Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. CRC Crit Rev Biochem Mol Biol 1989; 24: 479–564.CrossRefGoogle Scholar
  27. 27.
    Wagner G. NMR investigations of protein structure. Prog NMR Spectroscopy 1990; 22: 101–39.CrossRefGoogle Scholar
  28. 28.
    Kay L, Ikura M, Tschudin R, Bax A. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 1990; 89: 496–514.Google Scholar
  29. 29.
    Ikura M, Kay M, Bax A. Novel approach for sequential assignment of 1H, 13C and 15N spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy: application to calmodulin. Biochemistry 1990; 29: 4659–67.PubMedCrossRefGoogle Scholar
  30. 30.
    Montelione G, Wagner G. Conformation-independent sequential NMR connections in isotope-enriched polypeptides by 1H-13C-15NN triple-resonance experiments. J Magn Reson 1990; 87: 183–8.Google Scholar
  31. 31.
    Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee G, Bax A. Solution structure of a Calmodulin-target peptide complex by multidimensional NMR. Science 1992; 256: 632–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Clore GM, Wingfield P, Gronenborn AM. High-resolution three-dimensional structure of Interleukin β in solution by three-and four-dimensional nuclear magnetic resonance spectroscopy. Biochemistry 1991; 30: 2315–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Noggle JH, Schirmer RE. The nuclear Overhauser effect: chemical applications. New York: Academic Press, 1971.Google Scholar
  34. 34.
    Boucher W, Laue E, Campbell S, Domaille P. Four-dimensional hetero-nuclear triple-resonance NMR methods for the assignment of backbone nuclei in proteins. J Am Chem Soc 1992; 114: 2262–4.CrossRefGoogle Scholar
  35. 35.
    Kay L, Wittekind M, McCoy M, Friedrichs M, Miller L. 4D NMR triple-resonance experiments for assignment of protein backbone nuclei using shared constant-time evolution periods. J Magn Reson 1992; 98: 443–50.Google Scholar
  36. 36.
    Olejniczak ET, Xu RX, Petros AM, Fesik SW. Optimized constant-time 4D HNCaHa and HN(CO)CαHα experiments: applications to the backbone assignments of the FKBP/Asomycin complex. J Magn Reson 1992; 100: 444–50.Google Scholar
  37. 37.
    Grzesiek S, Bax AJ. Improved 3D triple-resonance NMR techniques applied to a 31 kD protein. Magn Reson 1992; 96: 432–40.Google Scholar
  38. 38.
    Palmer AG III, Fairbrother WJ, Cavangh J, Wrught PE, Rance M. Improved resolution in three-dimensional constant-time triple resonance NMR spectroscopy of proteins. J Biomol NMR 1992; 2: 103–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Farmer BT II, Venters RA, Spicer LD, Wittekind MG, Mueller L. Refocused optimized HNCα: increased sensitivity and resolution in large macromolecules. J Biomol NMR 1992; 2: 195–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Clubb RT, Thanabal V, Wagner G. A constant-time three-dimensional triple-resonance pulse scheme to correlate intraresidue 1H, 15N and 13C: chemical shifts in 15N-13C-labeled proteins. J Magn Reson 1992; 97: 213–7.Google Scholar
  41. 41.
    Bax A, Clore GM, Driscoll PC, Gronenborn AM, Ikura M, Kay L. Practical aspects of proton-carbon-carbon-proton three-dimensional correlation spectroscopy of 13C-labeled proteins. J Magn Reson 1990; 87: 620–7.Google Scholar
  42. 42.
    Bax A, Clore GM, Gronenborn AM. 1H-1H correlation via isotopic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J Magn Reson 1990; 88: 425–31.Google Scholar
  43. 43.
    Fesik SW, Eaton HL, Olejniczak ET, Zuiderweg ERP, McIntosh LP, Dahlquist FW. Proton-proton correlation via carbon-carbon couplings: a three-dimensional NMR approach for the assignment of aliphatic resonances in proteins labeled with carbon-13. J Am Chem Soc 1990; 112: 886–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Joyce W. Lustbader
  • Chuan Wang
  • Xiaolu Zhang
  • Steven Birken
  • Hao Wu
  • Jonathan Miles Brown
  • David Yarmush
  • Susan Pollak
  • Robert E. Canfield

There are no affiliations available

Personalised recommendations