Skip to main content

Receptor Binding Regions of hLH and hCGβ-Subunit: Structural and Functional Properties

  • Conference paper
Glycoprotein Hormones

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

For the study of structure-activity relations, we encounter in the glycoprotein hormones a group of molecules with characteristics of both a typical peptide hormone and a larger globular protein. As noted by Dyson and Wright (1), the active conformation of a small hormone or bioactive peptide may be imposed predominantly by the shape of the receptor, while regions of interest within a protein are inevitably involved in interactions within the molecule itself. In the absence of a detailed three-dimensional structure, the extent and nature of these influences within the glycoprotein hormone molecule remain largely uncharted. They must, however, be considered an important factor in the alignment and relative contributions of the multiple receptor binding sites revealed in all four glycoprotein hormones by assays of individual synthetic peptides (2–8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dyson HJ, Wright PE. Defining solution conformations of small linear peptides. Annu Rev Biophys Biophys Chem 1991; 20: 519–38.

    Article  PubMed  CAS  Google Scholar 

  2. Keutmann HT, Charlesworth MC, Kitzmann K, Mason KA, Johnson L, Ryan RJ. Primary and secondary structural determinants in the receptor binding sequence β-(38–57) from human luteinizing hormone. Biochemistry 1988; 27: 8939–44.

    Article  PubMed  CAS  Google Scholar 

  3. Keutmann HT. Receptor-binding regions in human glycoprotein hormones. Mol Cell Endocrinol 1992; 86: C1–6.

    Article  PubMed  CAS  Google Scholar 

  4. Charlesworth MC, McCormack DJ, Madden B, Ryan RJ. Inhibition of human choriogonadotropin binding to receptor by human choriogonadotropin alpha peptides: a comprehensive synthetic approach. J Biol Chem 1987; 262: 13409–16.

    PubMed  CAS  Google Scholar 

  5. Santa Coloma TA, Reichert LE Jr. Identification of a follicle-stimulating hormone receptor-binding region in hFSH-beta-(81–95) using synthetic peptides. J Biol Chem 1990; 265: 5037–42.

    PubMed  CAS  Google Scholar 

  6. Santa Coloma TA, Crabb JW, Reichert LE Jr. A synthetic peptide encompassing two discontinuous regions of hFSH-13 subunit mimics the receptor binding surface of the hormone. Mol Cell Endocrinol 1991; 78: 197–204.

    Article  PubMed  CAS  Google Scholar 

  7. Morris JC, McCormick DJ, Ryan RJ Inhibition of thyrotropin binding to receptor by synthetic human thyrotropin beta peptides. J Biol Chem 1990; 265: 1881–4.

    PubMed  CAS  Google Scholar 

  8. Freeman SL, McCormick DJ, Ryan RJ, Morris JC Inhibition of TSH bioactivity by synthetic beta TSH peptides. Endocr Res 1992; 18: 1–17.

    PubMed  CAS  Google Scholar 

  9. Cunningham BC, Jhurani P, Ng P, Wells JA. Receptor and antibody epitopes in human growth hormone identified by homolog-scanning mutagenesis. Science 1989; 243: 1330–6.

    Article  PubMed  CAS  Google Scholar 

  10. Mollison KW, Mandecki W, Zuiderweg ERP, et al. Identification of receptor-binding residues in the inflammatory complement protein C5a by site-directed mutagenesis. Proc Natl Acad Sci USA 1989; 86: 292–6.

    Article  PubMed  CAS  Google Scholar 

  11. Chen F, Puett D. Contributions of arginines-43 and -94 of human choriogonadotropin-beta to receptor binding and activation as determined by oligonucleotide-based mutagenesis. Biochemistry 1991; 30: 10171–5.

    Article  PubMed  CAS  Google Scholar 

  12. Chen F, Wang Y, Puett D. Role of the invariant aspartic acid 99 of human choriogonadotropin β in receptor binding and biological activity. J Biol Chem 1991; 266: 19357–61.

    PubMed  CAS  Google Scholar 

  13. Campbell RK, Dean Emig DM, Moyle WR. Conversion of human choriogonadotropin into a follitropin by protein engineering. Proc Natl Acad Sci USA 1991; 88: 760–4.

    Article  PubMed  CAS  Google Scholar 

  14. Yoo J, Ji I, Ji T. Conversion of lysine-91 to methionine or glutamic acid in human choriogonadotropin alpha results in the loss of cAMP inducibility. J Biol Chem 1991; 266: 17741–3.

    PubMed  CAS  Google Scholar 

  15. Bielinska M, Boime I. Site-directed mutagenesis defines a domain in the gonadotropin alpha-subunit required for assembly with the chorionic gonadotropin B-subunit. Mol Endocrinol 1992; 6: 267–71.

    Article  CAS  Google Scholar 

  16. Chen F, Wang Y, Puett D. The carboxy-terminal region of the glycoprotein hormone alpha subunit: contributions to receptor binding and signaling in human chorionic gonadotropin. Mol Endocrinol 1992; 6: 914–9.

    Article  PubMed  CAS  Google Scholar 

  17. Pierce JG, Parsons TF. Glycoprotein hormones: structure and function. Annu Rev Biochem 1981; 50: 465–95.

    Article  PubMed  CAS  Google Scholar 

  18. Sairam MR. Gonadotropic hormones: relationship between structure and function with emphasis on antagonists. In: Li CH, ed. Hormonal proteins and peptides. New York: Academic Press, 1983: 1–79.

    Google Scholar 

  19. Gordon WL, Ward DN. Structural aspects of luteinizing hormone actions. In: Ascoli M, ed. Luteinizing hormone receptors and action. Paris: CRC Press, 1985: 173–98.

    Google Scholar 

  20. Ryan RJ, Keutmann HT, Charlesworth MC, et al. Structure and function of the glycoprotein hormones. Recent Prog Horm Res 1987; 43: 383–429.

    PubMed  CAS  Google Scholar 

  21. Combarnous Y. Molecular basis of the specificity of binding of glycoprotein hormones to their receptors. Endocr Rev 1992; 13: 670–91.

    PubMed  CAS  Google Scholar 

  22. Keutmann HT, Charlesworth MC, Mason KA, Ostrea T, Johnson L, Ryan RJ. A receptor-binding region in human choriogonadotropin/lutropin beta subunit. Proc Natl Acad Sci USA 1987; 84: 2038–41.

    Article  PubMed  CAS  Google Scholar 

  23. Keutmann HT, Mason KA, Kitzmann K, Ryan RJ. Role of the beta-(93–100) determinant loop sequence in receptor binding and biological activity of human luteinizing hormone and chorionic gonadotropin. Mol Endocrinol 1989; 3: 526–31.

    Article  PubMed  CAS  Google Scholar 

  24. Keutmann HT, Rubin DA, Mason KA, Kitzmann K, Zschunke M, Ryan RJ. Receptor binding and subunit interaction by the N-terminal (1–15) region of LH/hCG β subunit shown by use of synthetic peptides. In: Smith JA, Rivier JE, eds. Peptides: chemistry and biology. Leiden: ESCOM, 1992: 74–6.

    Google Scholar 

  25. Matzuk MM, Hsueh AJW, LaPolt P, Tsafriri A, Keene JL, Boime I. The biological role of the carboxyl-terminal extension of human chorionic gonadotropin beta subunit. Endocrinology 1990; 126: 376–83.

    Article  PubMed  CAS  Google Scholar 

  26. Chen F, Puett D. Delineation via site-directed mutagenesis of the carboxyl-terminal region of human choriogonadotropin beta required for subunit assembly and biological activity. J Biol Chem 1991; 266: 6904–8.

    PubMed  CAS  Google Scholar 

  27. Dohlman JG, Loff HD, Segrest JP. Charge distributions and amphipathicity of receptor-binding alpha-helices. Mol Immunol 1990; 27: 1009–20.

    Article  PubMed  CAS  Google Scholar 

  28. Sairam M. Role of arginine residues in ovine lutropin: reversible modification by 1,2-cyclohexanedione. Arch Biochem Biophys 1976; 176: 197–205.

    Article  PubMed  CAS  Google Scholar 

  29. Boniface JJ, Reichert LE Jr. Evidence for a novel thioredoxin-like catalytic property of gonadotropic hormones. Science 1990; 247: 61–4.

    Article  PubMed  CAS  Google Scholar 

  30. Keutmann HT, Hua QX, Weiss MA. Structure of a receptor-binding fragment from human luteinizing hormone 13-subunit determined by [1H]- and [15N]-nuclear magnetic resonance spectroscopy. Mol Endocrinol 1992; 6: 904–13.

    Article  PubMed  CAS  Google Scholar 

  31. Sullivan KA, Miller RT, Masters SB, Beiderman B, Heideman W, Bourne HR. Identification of receptor contact site involved in receptor-G protein coupling. Nature 1987; 330: 758–60.

    Article  PubMed  CAS  Google Scholar 

  32. Koo YB, Ji I, Slaughter RG, Ji T. Structure of the luteinizing hormone receptor gene and multiple exons of the coding sequence. Endocrinology 1991; 128: 2297–308.

    Article  PubMed  CAS  Google Scholar 

  33. Roche PC, Ryan RJ, McCormick DJ. Identification of hormone-binding regions of the luteinizing hormone/human chorionic gonadotropin receptor using synthetic peptides. Endocrinology 1992; 131: 268–74.

    Article  PubMed  CAS  Google Scholar 

  34. Leinung MC, Bergert ER, McCormick DJ, Morris JC. Synthetic analogs of the carboxyl-terminus of f3-thyrotropin: the importance of basic amino acids in receptor binding activity. Biochemistry 1992; 31: 10094–8.

    Article  PubMed  CAS  Google Scholar 

  35. Agris PF, Guenther RH, Sierzputowska GH, et al. Solution structure of a synthetic peptide corresponding to a receptor binding region of FSH (hFSHbeta 33–53). J Protein Chem 1992; 11: 495–507.

    Article  PubMed  CAS  Google Scholar 

  36. Grasso P, Santa Coloma TA, Reichert LE Jr. Synthetic peptides corresponding to human follicle-stimulating hormone (hFSH)-β-(1–15) and hFSH-β-(51–65) induce uptake of 45Ca++ by liposomes: evidence for calcium-conducting transmembrane channel formation. Endocrinology 1991; 128: 2745–51.

    Article  PubMed  CAS  Google Scholar 

  37. Wadsworth HL, Russo D, Nagayama Y, Chazenbalk GD, Rapoport B. Studies on the role of amino acids 38–45 in the expression of a functional thyrotropin receptor. Mol Endocrinol 1992; 6: 394–8.

    Article  PubMed  CAS  Google Scholar 

  38. Birken S, Gawinowicz-Kolks MA, Amr S, Nisula B, Puett D. Tryptic digestion of the alpha subunit of human chorionic gonadotropin. J Biol Chem 1986; 261: 10719–27.

    PubMed  CAS  Google Scholar 

  39. Gamier J. Molecular aspects of the subunit assembly of glycoprotein hormones. In: McKerns KW, ed. Structure and function of the gonadotropins. New York: Plenum Press, 1978: 381–414.

    Google Scholar 

  40. Bousfield GR, Ward DN. Selective proteolysis of ovine lutropin or its beta subunit by endoproteinase Arg-C. J Biol Chem 1988; 263: 12602–7.

    PubMed  CAS  Google Scholar 

  41. Cole LA, Kardana A, Andrade-Gordon P, et al. The heterogeneity of human chorionic gonadotropin (hCG), III. The occurrence and biological and immunological activities of nicked hCG. Endocrinology 1991; 129: 1559–67.

    Article  PubMed  CAS  Google Scholar 

  42. Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL. Hypogonadism caused by a single amino acid substitution in the β-subunit of luteinizing hormone. N Engl J Med 1992; 326: 179–83.

    Article  PubMed  CAS  Google Scholar 

  43. Milius RP, Keutmann HT, Ryan RJ. Molecular modeling of residues 38–57 of the beta-subunit of human lutropin. Mol Endocrinol 1990; 4: 859–68.

    Article  PubMed  CAS  Google Scholar 

  44. Dyson HJ, Merutka G, Waltho JP, Lerner RA, Wright PE. Folding of peptide fragments comprising the complete sequence of proteins: models for initiation of protein folding, I. Myohemerythrin. J Mol Biol 1992; 226: 795–817.

    CAS  Google Scholar 

  45. Leebeek FWG, Kariya K, Schwabe M, Fowlkes DM. Identification of a receptor binding site in the carboxyl terminus of human interleukin-6 J Biol Chem 1992; 267: 14832–8.

    CAS  Google Scholar 

  46. Santa Coloma TA, Dattareyamurty B, Reichert LE Jr. A synthetic peptide corresponding to human FSH-beta subunit 33–53 binds to FSH receptor, stimulates basal estradiol biosynthesis, and is a partial antagonist of FSH. Biochemistry 1990; 29: 1194–200.

    Article  PubMed  CAS  Google Scholar 

  47. Reed DK, Ryan RJ, McCormick DJ. Residues in the alpha subunit of human choriogonadotropin that are important for interaction with the lutropin receptor. J Biol Chem 1991; 266: 14251–5.

    PubMed  CAS  Google Scholar 

  48. Bidart JM, Troalen F, Bousfield GR, Birken S, Bellet DH. Antigenic determinants on human choriogonadotropin alpha-subunit, I. Characterization of topographic sites recognized by monoclonal antibodies. J Biol Chem 1988; 263: 10364–9.

    PubMed  CAS  Google Scholar 

  49. Weiner RS, Andersen TT, Dias JA. Topographic analysis of the alpha-subunit of human follicle-stimulating hormone using site-specific antipeptide antisera. Endocrinology 1990; 127: 573–9.

    Article  PubMed  CAS  Google Scholar 

  50. Salesse R, Bidart JM, Troalen F, Bellet D, Gamier J. Peptide mapping of intersubunit and receptor interactions in human choriogonadotropin. Mol Cell Endocrinol 1990; 68: 113–9.

    Article  PubMed  CAS  Google Scholar 

  51. Krystek SR Jr, Dias JA, Andersen TT. Identification of subunit contact sites on the alpha-subunit of lutropin. Biochemistry 1991; 30: 1858–64.

    Article  PubMed  CAS  Google Scholar 

  52. Weare JA, Reichert LE Jr. Studies with carbodiimide-cross-linked derivatives of bovine lutropin, II. Location of the cross-link and implication for interaction with the receptors in testes. J Biol Chem 1979; 254: 6972–9.

    PubMed  CAS  Google Scholar 

  53. van Dijk S, Ward DN. Chemical cross-linking of porcine luteinizing hormone: location of the cross-link and consequences for stability and biological activity. Endocrinology 1993; 132: 534–8.

    Article  PubMed  Google Scholar 

  54. Keutmann HT, Rubin DA. A subunit interaction site in human luteinizing hormone: identification by photoaffinity cross-linking. Endocrinology 1993; 132: 1305–12.

    Article  PubMed  CAS  Google Scholar 

  55. Azuma C, Miyai K, Saji F, et al. Site-specific metagenesis of human chorionic gonadotrophin (hCG)-β subunit: influence of mutation on hCG production. J Mol Endocrinol 1990; 5: 97–102.

    Article  PubMed  CAS  Google Scholar 

  56. Hayashizaki Y, Hiroaka Y, Endo Y, Matsubara K. Thyroid-stimulating hormone (TSH) deficiency caused by a single base substitution in the CAGYC region of the beta subunit. EMBO J 1989; 8: 2291–6.

    PubMed  CAS  Google Scholar 

  57. Hage van Noort M, Puijk WC, Plasman HH, et al. Synthetic peptides based upon a three-dimensional model for the receptor recognition site of follicle-stimulating hormone exhibit antagonistic or agonistic activity at low concentrations. Proc Natl Acad Sci USA 1992; 89: 3922–6.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Keutmann, H.T. (1994). Receptor Binding Regions of hLH and hCGβ-Subunit: Structural and Functional Properties. In: Lustbader, J.W., Puett, D., Ruddon, R.W. (eds) Glycoprotein Hormones. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8386-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8386-4_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8388-8

  • Online ISBN: 978-1-4613-8386-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics