Skip to main content

Statistical optics and effective medium theories of color

  • Chapter
Mathematics in Industrial Problems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 57))

  • 307 Accesses

Abstract

Measurements of color are typically made by determining the spectral intensity of light diffusely reflected from images. In xerography color images are heterogeneous systems composed of light absorbing pigments of different colors and sizes suspended in a semitransparent binder. Classical textbook optics predicts the intensity of light specularly reflected from smooth homogeneous surfaces, but cannot provide the detailed information required for these complex optical systems. On October 30, 1992 Robert J. Meyer from Webster Research Center of Xerox has described how statistical optics and effective medium theories predict the intensity of light diffusely reflected from a rough surface of a body containing many small particles; such systems occur within the color image photocopier. He indicated some shortcomings of the dynamic effective medium theory and presented open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Friedman, Mathematics in Industrial Problems, Part 2, IMA Volume 24, Springer-Verlag, New York (1989).

    MATH  Google Scholar 

  2. A. Friedman, Mathematics in Industrial Problems, Part 5, IMA Volume 49, Springer-Verlag, New York (1992).

    Google Scholar 

  3. M. Born and E. Wolf, Principles of Optics, 6th edition, Pergamon Press, Oxford (1985).

    Google Scholar 

  4. D.M. Wood and N.W. Ashroft, Effective medium theory of optical properties of small particle composites, Phil. Mag., 35 (1977), 269–280.

    Article  Google Scholar 

  5. Yu. E. Lozovik and A.V. Klyuchnik, The dielectric function and collective oscillations in inhomogeneous systems, in “The Dielectric Function of Condensed Systems,” L.V. Keldysh, D.A. Kirzhnita. and A.A. Maraderdin eds., pp. 299–387, North-Holland, Amsterdam (1989).

    Google Scholar 

  6. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, Annalen der Physik, 24 (1935), 636–679.

    Article  Google Scholar 

  7. P. Sheng, Microstructures and physical properties of composites,in “Homogenization and Effective Moduli of Materials and Media,” IMA Volume 1, eds. J.L. Ericksen, D. Kinderlehrer, R. Kohn and J.-L. Lions, Springer-Verlag, New York (1986), pp. 196–227.

    Google Scholar 

  8. R.J. Meyer and C.B. Duke,, submitted to Color Research and Applications.

    Google Scholar 

  9. O. Wiener, Theory of refraction constants, Ber. Sächs. Ges. Wiss. (Math. Phys. Kl.), 62 (1910), 256–277

    Google Scholar 

  10. D. Stroud and F.P. Pan, Self-consistent approach to electromagnetic wave propagation in composite media: Application to model granular metals, Physical Review, 17 (1978), 1602–1610.

    Article  MATH  Google Scholar 

  11. P. Chÿlek and V. Srivastava, Dielectric constant of a composite inhomogeneous medium, Physical Review B, 27 (1983), 5098–5106.

    Article  Google Scholar 

  12. J.M. Ziman, Principles of the Theory of Solids, 2nd ed., Cambridge University Press, Cambridge (1972).

    Google Scholar 

  13. C. Kittel, Introduction to Solid State Physics,6th edition, John Wiley, New York (1986).

    Google Scholar 

  14. A.J. Sievers and J.B. Page, A generalized Lyddane-Sachs-Teller relation for solids and liquids, Infrared Physics, 32 (1991), 425–433.

    Article  Google Scholar 

  15. J.M. Zavislan, Ph.D. thesis, University of Rochester, Rochester, N.Y. (1987).

    Google Scholar 

  16. W.L. McMillan, X-ray scattering from liquid crystals. I. Cholesteryl nonaoate and Myristate, Physical Review A, 6 (1972), 936–946.

    Article  Google Scholar 

  17. A. Friedman, Mathematics in Industrial Problems, Part 3, IMA Volume 31, Springer-Verlag, New York (1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Friedman, A. (1994). Statistical optics and effective medium theories of color. In: Mathematics in Industrial Problems. The IMA Volumes in Mathematics and its Applications, vol 57. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8383-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8383-3_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8385-7

  • Online ISBN: 978-1-4613-8383-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics