Biochemical and Functional Properties of Somatostatin Receptors

  • Terry Reisine
  • Karen Raynor
  • Haeyoung Kong
  • Susan F. Law
  • Magali Theveniau
  • Melanie Tallent
  • Stephanie Rens-Domiano
  • John Hines
  • Kazuki Yasuda
  • Graeme I. Bell
Conference paper
Part of the Serono Symposia USA Norwell, Massachusetts book series (SERONOSYMP)


The tetradecapeptide somatostatin (SRIF) exerts diverse biological actions in the endocrine and nervous systems (1, 2). It is the major physiological inhibitor of growth hormone secretion from the anterior pituitary and insulin and glucagon release from the pancreatic islets and also regulates gastric acid secretion from the gut (3–6). SRIF is also expressed in extrahypothalamic locations in the brain, where it has a role in controlling cognitive functions (7, 8). Furthermore, in the striatum, where it has been implicated in modulating locomotor activity (9, 10), SRIF is a major stimulant of dopamine release from nigrostriatal neurons and may interact with dopamine in modulating basal ganglia functions (11).


Adenylyl Cyclase Chinese Hamster Ovary Cell Pertussis Toxin Adenylyl Cyclase Activity Potential Glycosylation Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Epelbaum J. Somatostatin in the central nervous system: physiology and pathological modifications. Prog Neurobiol 1986;27:63–100.PubMedCrossRefGoogle Scholar
  2. 2.
    Raynor K, Reisine T. Somatostatin receptors. Crit Rev Neurobiol 1992; 16:273–89.Google Scholar
  3. 3.
    Brazeau P, Vale W, Burgus R, Ling N, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1972;129:77–9.Google Scholar
  4. 4.
    Patel Y, Sirkant C. Somatostatin mediation of adenohypophysial secretion. Annu Rev Physiol 1986;48:551–67.PubMedCrossRefGoogle Scholar
  5. 5.
    Koerker D, Ruch W, Chickadel E, et al. Somatostatin: hypothalamic inhibitor of the endocrine pancreas. Science 1974;184:482–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Chickadel E, Palmer J, Koerker D, Ensinck J, Davidson M, Goodner C. Somatostatin blockade of acute and chronic stimuli of the endocrine pancreas and consequences of this blockade on glucose homeostasis. J Clin Invest 1975;55:754–7.CrossRefGoogle Scholar
  7. 7.
    Haroutunian V, Mantin G, Campell G, Tsuboyama G, Davis K. Cysteamine-induced depletion of central SRIF-like immunoreactivity: effects on behavior, learning, memory, and brain neurochemistry. Brain Res 1987;403:234–42.PubMedCrossRefGoogle Scholar
  8. 8.
    DeNoble V, Hepler D, Barto R. Cysteamine-induced depletion of somatostatin produces differential cognitive deficits in rats. Brain Res 1989;482:42–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Rezek M, Havlicek V, Hughes K, Friesen H. Neostriatal administration of somatostatin: differential effect of small and large doses on behavior and motor control. Can J Physiol Pharmacol 1977;55:234–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Raynor K, Lucki I, Reisine T. Somatostatin1 receptors in the nucleus ac-cumbens selectively mediate the stimulatory effect of somatostatin on locomotor activity in rats. J Pharmacol Exp Ther (in press).Google Scholar
  11. 11.
    Chesselet MF, Reisine T. Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei. J Neurosci 1983;3:232–6.PubMedGoogle Scholar
  12. 12.
    Jakobs K, Akotories K, Schultz G. A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature 1983; 303:177–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Mahy N, Woolkalis M, Thermos K, Carlson K, Manning D, Reisine T. Pertussis toxin modifies the characteristics of both the inhibitory GTP binding proteins and the somatostatin receptor in anterior pituitary tumor cells. J Pharmacol Exp Ther 1988;246:779–85.PubMedGoogle Scholar
  14. 14.
    Wang H, Reisine T, Dichter M. Somatostatin-14 and somatostatin-28 inhibit calcium currents in rat neocortical neurons. Neuroscience 1990;342: 335–42.CrossRefGoogle Scholar
  15. 15.
    Wang H, Bogen C, Reisine T, Dichter M. Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons. Proc Natl Acad Sci USA 1989;86:9616–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang H, Dichter M, Reisine T. Lack of cross-desensitization of somatostatin-14 and somatostatin-28 receptors coupled to potassium channels in rat neocortical neurons. Mol Pharmacol 1990;38:357–61.PubMedGoogle Scholar
  17. 17.
    Jacquin T, Champagnat J, Madamba S, Denavit-Saubie M, Siggins G. Somatostatin depresses excitability in neurons of the solitary tract complex through hyperpolarization and augmentation of IM, a non-inactivating voltage-dependent outward current blocked by muscarinic agonist. Proc Natl Acad Sci USA 1988;85:948–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Barber D, McGuire M, Ganz M. Beta-adrenergic and somatostatin receptors regulate Na+/H+ exchange independent of cAMP. J Biol Chem 1989;264:21038–42.PubMedGoogle Scholar
  19. 19.
    Tahiri-Jouti N, Cambillau C, Viguerie N, et al. Characterization of a membrane tyrosine phosphatase in AR42J cells: regulation by somatostatin. Am J Physiol 1992;262:G1007–14.PubMedGoogle Scholar
  20. 20.
    Viguerie N, Tahiri-Jouti N, Ayral A, et al. Direct inhibitory effects of somatostatin analog SMS-201–995 on AR4-J cell proliferation via pertussis toxin-sensitive GTP binding protein-independent mechanism. Endocrinology 1989;124:1017–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Mandarino L, Stenner D, Blanchard W, et al. Selective effects of somatostatin-14, -25, and -28 on in vitro insulin and glucagon secretion. Nature 1981; 291:76–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Reubi JC. Evidence for two somatostatin-14 receptor subtypes in rat brain cortex. Neurosci Lett 1984;49:259–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Tran V, Beal F, Martin J. Two types of somatostatin receptors differentiated by cyclic somatostatin analogs. Science 1985;228:492–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Raynor K, Reisine T. Analogs of somatostatin selectively label distinct subtypes of somatostatin receptors in rat brain. J Pharmacol Exp Ther 1989;251:510–7.PubMedGoogle Scholar
  25. 25.
    Raynor K, Coy D, Reisine T. Analogues of somatostatin bind selectively to brain somatostatin receptor subtypes. J Neurochem 1992;59:1241–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Sakamoto C, Nagao M, Matozaki T, Nishizaki H, Konda Y, Baba S. Somatostatin receptors on rat cerebrocortical membranes. J Biol Chem 1988;263:14441–5.PubMedGoogle Scholar
  27. 27.
    Rens-Domiano S, Reisine T. Biochemical and functional properties of somatostatin receptors. J Neurochem 1992;58:1987–96.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamada Y, Post S, Wang K, Tager H, Bell GI, Seino S. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract and kidney. Proc Natl Acad Sci USA 1992;89:251–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Yasuda K, Rens-Domiano S, Breder C, et al. Cloning of a novel somatostatin receptor, SSTR3, coupled to adenylyl cyclase. J Biol Chem 1992;267:20422–8.PubMedGoogle Scholar
  30. 30.
    Yamada Y, Reisine T, Law SF, et al. Somatostatin receptors, an expanding gene family: cloning and functional characterization of human SSTR3, a protein coupled to adenylyl cyclase. Mol Endocrinol (in press).Google Scholar
  31. 31.
    Li XJ, Forte M, North R, Ross C, Snyder S. Cloning and expression of a rat somatostatin receptor enriched in brain. J Biol Chem 1992;267:21307–12.PubMedGoogle Scholar
  32. 32.
    Meyerhof W, Wulfsen I, Schonrock C, Fehr S, Richter D. Molecular cloning of a somatostatin-28 receptor and comparison of its expression pattern with that of a somatostatin-14 receptor in rat brain. Proc Natl Acad Sci USA 1992;89:10267–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Kluxen F, Bruns C, Lubbert H. Expression cloning a rat brain somatostatin receptor cDNA. Proc Natl Acad Sci USA 1992;89:4618–22.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Carroll AM, Lolait S, Konig M, Mahan L. Molecular cloning and expression of a pituitary somatostatin receptor with preferential affinity for somatostatin-28. Mol Pharmacol (in press).Google Scholar
  35. 35.
    Bruno J, Xu Y, Song J, Berelowitz M. Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc Natl Acad Sci USA (in press).Google Scholar
  36. 36.
    . Bell GI, Reisine T. Molecular biology of somatostatin receptors. Trends Neurosci (in press).Google Scholar
  37. 37.
    Breder C, Yamada Y, Yasuda K, Seino S, Saper C, Bell GI. Differential expression of somatostatin receptor subtypes in brain. J Neurosci 1992;12:3920–34.PubMedGoogle Scholar
  38. 38.
    Martin JL, Chesselet MF, Raynor K, Gonzales C, Reisine T. Differential distribution of somatostatin receptor subtypes in rat brain revealed by newly developed somatostatin analogs. Neuroscience 1991;41:581–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Gonzalez B, Leroux P, Bodenant A, Laquerrier A, Coy D, Vaudry H. Ontogeny of somatostatin receptors in rat brain: biochemical and autoradiographic study. Neuroscience 1989;29:629–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Gonzalez B, Leroux P, Lamacz M, Bodenant C, Balazs R, Vaudry H. Somatostatin receptors are expressed by immature cerebellar granule cells: evidence for a direct inhibitory effect of somatostatin on neuroblast activity. Proc Natl Acad Sci USA 1992;89:9627–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Vanetti M, Kouba M, Wang X, Vogt G, Hollt V. Cloning and expression of a novel mouse somatostatin receptor (SSTR2B). FEBS Lett 1992;311:290–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Rens-Domiano S, Law SF, Yamada Y, Seino S, Bell G, Reisine T. Pharmacological properties of two cloned somatostatin receptors. Mol Pharmacol 1992;42:28–34.PubMedGoogle Scholar
  43. 43.
    Sekura R, Moss J, Vaughan M. Pertussis toxin. New York: Academic Press, 1985.Google Scholar
  44. 44.
    Law SF, Manning D, Reisine T. Identification of the subunits of GTP binding proteins coupled to somatostatin receptors. J Biol Chem 1991;266:17885–97.PubMedGoogle Scholar
  45. 45.
    Law SF, Reisine T. Agonist binding to rat brain somatostatin receptors alters the interaction of the receptors with guanine nucleotide-binding regulatory proteins. Mol Pharmacol 1992;42:398–402.PubMedGoogle Scholar
  46. 46.
    Law SF, Reisine T. The somatostatin receptor expressed in 293 cells and the cloned SRIF receptor SSTR2 selectively couple to Gia3. Mol Biol Cell 1992;3:280a.Google Scholar
  47. 47.
    Tallent M, Reisine T. Gia1 selectively couples somatostatin receptors to adenylyl cyclase in AtT-20 cell membranes. Mol Pharmacol 1992;41:452–5.PubMedGoogle Scholar
  48. 48.
    Tallent M, Raynor K, Dichter M, Reisine T. Properties of somatostatin! receptor subtypes in AtT-20 cells. Soc Neurosci Abst 1992;18:449a.Google Scholar
  49. 49.
    Raynor K, Wang HL, Dichter M, Reisine T. Subtypes of somatostatin receptors couple to multiple cellular effector systems. Mol Pharmacol 1991; 40:248–53.PubMedGoogle Scholar
  50. 50.
    Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B. Assignment of G protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 1991;353:43–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Yatani A, Codina J, Sekura R, Birnbaumer L, Brown A. Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K+ channels by Gk protein in clonal rat anterior pituitary cell membranes. Mol Endocrinol 1987;1:283–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Theveniau M, Raynor K, Yasuda K, Bell G, Reisine T. Identification of two isoforms of the cloned somatostatin receptor, SSTR2 (submitted).Google Scholar
  53. 53.
    Rens-Domiano S, Reisine T. Structural analysis and functional role of the carbohydrate component of somatostatin receptors. J Biol Chem 1991;266:20094–102.PubMedGoogle Scholar
  54. 54.
    Reisine T, Rens-Domiano S, Law SF, Takeda J, Yasuda K. Location of carbohydrates in the somatostatin receptor SSTR2 involved in high affinity agonist binding. Mol Biol Cell 1992;3:299a.Google Scholar
  55. 55.
    Raynor K, Reisine T. Subtypes of somatostatin receptors are expressed in the anterior pituitary cell line GH3. J Pharmacol Exp Ther (in press).Google Scholar
  56. 56.
    Mahy N, Woolkalis M, Manning D, Reisine T. Characteristics of somatostatin desensitization in the pituitary tumor cell line AtT-20. J Pharmacol Exp Ther 1988;247:390–6.PubMedGoogle Scholar
  57. 57.
    Mayor F, Benovic J, Caron M, Lefkowitz R. Somatostatin induces translocation of the beta-adrenergic receptor kinase and desensitizes somatostatin receptors in S49 lymphoma cells. J Biol Chem 1987;262:6468–71.PubMedGoogle Scholar
  58. 58.
    Delfs J, Rens-Domiano S, Benovic J, Reisine T. Regulation of somatostatin receptors by beta-adrenergic receptor kinase. Soc Neurosci Abst 1991;17:319–31.Google Scholar
  59. 59.
    Srikant C, Patel Y. Receptor binding of somatostatin-28 is tissue specific. Nature 1981;294:259–60.PubMedCrossRefGoogle Scholar
  60. 60.
    Theveniau M, Rens-Domiano S, Law SF, Rougon G, Reisine T. Development of antibodies against the rat brain somatostatin receptor. Proc Natl Acad Sci USA 1992;89:4314–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Kong H, Theveniau M, Spencer C, Murray C, Eberwine J, Reisine T. Progress towards cloning of a novel somatostatin receptor. Soc Neurosci Abst 1992;18:448a.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Terry Reisine
  • Karen Raynor
  • Haeyoung Kong
  • Susan F. Law
  • Magali Theveniau
  • Melanie Tallent
  • Stephanie Rens-Domiano
  • John Hines
  • Kazuki Yasuda
  • Graeme I. Bell

There are no affiliations available

Personalised recommendations