Skip to main content

Cutting down on Fill Using Nested Dissection: Provably Good Elimination Orderings

  • Conference paper
Graph Theory and Sparse Matrix Computation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 56))

Abstract

In the last two decades, many heuristics have been developed for finding good elimination orderings for sparse Cholesky factorization. These heuristics aim to find elimination orderings with either low fill, low operation count, or low elimination height. Though many heuristics seem to perform well in practice, there has been a marked absence of much theoretical analysis to back these heuristics. Indeed, few heuristics are known to provide any guarantee on the quality of the elimination ordering produced for arbitrary matrices.

In this work, we present the first polynomial-time ordering algorithm that guarantees approximately optimal fill. Our algorithm is a variant of the well-known nested dissection algorithm. Our ordering performs particularly well when the number of elements in each row (and hence each column) of the coefficient matrix is small. Fortunately, many problems in practice, especially those arising from finite-element methods, have such a property due to the physical constraints of the problems being modeled.

Our ordering heuristic guarantees not only low fill, but also approximately optimal operation count, and approximately optimal elimination height. Elimination orderings with small height and low fill are of much interest when performing factorization on parallel machines. No previous ordering heuristic guaranteed even small elimination height.

We will describe our ordering algorithm and prove its performance bounds. We shall also present some experimental results comparing the quality of the orderings produced by our heuristic to those produced by two other well-known heuristics.

Some of the work reported in this paper first appeared in an extended abstract in the Proceedings of the 31st Annual IEEE Conference on the Foundations of Computer Science, 1990 [33].

Brown University, Providence, RI 02912. Research supported by NSF grant CCR-9012357 and an NSF PYI award, together with PYI matching funds from Thinking Machines Corporation and Xerox Corporation. Additional support provided by ONR and DARPA contract N00014-83-K-0146 and ARPA Order No. 6320, Amendment 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Agrawal, “Network Design and Network Cut Dualities: Approximation Algorithms and Applications,” Ph.D. thesis, Technical Report CS-91–60, Brown University (1991).

    Google Scholar 

  2. H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson and T. Kloks, “Approximating treewidth, pathwidth, and minimum elimination tree height,” Technical Report CSL-90–01, Xerox Corporation, Palo Alto Research Center (1990).

    Google Scholar 

  3. E. Cuthill, and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” Proceedings of the 24th National Conference of the ACM (1969), pp. 157–172.

    Google Scholar 

  4. I. S. Duff, A. M. Erisman, and J. K. Reid, “On George’s nested dissection method,” SIAM Journal on Numerical Analysis, vol. 13 (1976), pp. 686–695.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Duff, N. Gould, M. Lescrenier, and J. K. Reid, “The multifrontal method in a parallel environment,” in Advances in Numerical Computation, M. Cox and S. Hammarling, eds., Oxford University Press (1990).

    Google Scholar 

  6. I. Duff, R. Grimes, and J. G. Lewis, “Users’ guide for the Harwell-Boeing sparse matrix collection,” Manuscript (1988).

    Google Scholar 

  7. I. Duff, R. Grimes, and J. G. Lewis, “Sparse matrix test problems,” ACM Transactions on Mathematical Software, vol. 15 (1989), pp. 1–14.

    Article  MATH  Google Scholar 

  8. I. Duff, and J. K. Reid, “The multifrontal solution of indefinite sparse symmetric linear equations,” ACM Transactions on Mathematical Software, vol. 9 (1983), pp. 302–325.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Duff, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University Press (1986).

    Google Scholar 

  10. K. A. Gallivan et al. Parallel Algorithms for Matrix Computations, SIAM (1990).

    Google Scholar 

  11. M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of NP-completeness, W. H. Freeman, San Francisco (1979).

    Google Scholar 

  12. George, J. A., “Computer implementation of a finite element method,” Tech. Report STANCS-208, Stanford University (1971).

    Google Scholar 

  13. George, J. A., “Block elimination of finite element system of equations,” in Sparse Matrices and Their Applications, D. J. Rose and R. A. Willoughby, eds., Plenum Press (1972).

    Google Scholar 

  14. George, J. A., “Nested Dissection of a regular finite element mesh,” SIAM Journal on Numerical Analysis 10 (1973), pp. 345–367.

    Article  MathSciNet  MATH  Google Scholar 

  15. George, J. A., “An automatic one-way dissection algorithm for irregular finite-element problems,” SIAM Journal on Numerical Analysis, vol. 17 (1980), pp. 740–751.

    Article  MathSciNet  MATH  Google Scholar 

  16. George, J. A., and J. W. Liu, “An automatic nested dissection algorithm for irregular finite-element problems,” SIAM Journal on Numerical Analysis, vol. 15 (1978), pp. 1053–1069.

    Article  MathSciNet  MATH  Google Scholar 

  17. George, J. A., and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall Inc. (1981).

    Google Scholar 

  18. George, J. A., and J. W. Liu, “The evolution of the minimum degree ordering algorithm,” SIAM Review, vol. 31 (1989), pp. 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  19. George, J. A., J. W. Liu, and E. G. Ng, “User’s guide for SPARSPAK: Waterloo sparse linear equations package,” Tech. Rep. CS78–30 (revised), Dept. of Computer Science, Univ. of Waterloo, Waterloo, Ontario, Canada (1980).

    Google Scholar 

  20. N. E. Gibbs, W. G. Poole Jr., and P. K. Stockmeyer, “An algorithm for reducing the bandwidth and profile of a sparse matrix,” SIAM Journal on Numerical Analysis, vol. 13 (1976), pp. 236–250.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. R. Gilbert, “Some Nested Dissection Order is Nearly Optimal,” Information Processing Letters 26 (1987/88), pp. 325–328.

    Google Scholar 

  22. J. R. Gilbert, personal communication (1989).

    Google Scholar 

  23. J. R. Gilbert and H. Hafsteinsson, “Approximating treewidth, minimum front size, and minimum elimination tree height,” manuscript, 1989.

    Google Scholar 

  24. J. R. Gilbert, D. J. Rose and A. Edenbrandt, “A separator theorem for chordal graphs,” SIAM J. Alg. Disc. Meth. 5 (1984), pp. 306–313.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. R. Gilbert, and R. Schreiber, “Hightly parallel sparse Cholesky factorization,” Tech. Report CSL-90–7, Xerox Palo Alto Research Center, 1990.

    Google Scholar 

  26. J. R. Gilbert, and R. E. Tarjan, “The analysis of a nested dissection algorithm,” Numerische Mathematik, vol. 50 (1987), pp. 377–404.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. R. Gilbert, and E. Zmijewski, “A parallel graph partitioning algorithm for a message-passing multiprocessor,” International Journal of Parallel Programming, vol. 16 (1987), pp. 427–449.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980).

    MATH  Google Scholar 

  29. A. J. Hoffman, M. S. Martin, and D. J. Rose, “Complexity bounds for regular finite difference and finite element grids,” SIAM Journal on Numerical Analysis, vol. 10 (1973), pp. 364–369.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Jess, and H. Kees, “A data structure for parallel L/U decomposition,” IEEE Transactions on Computers, vol. 31 (1982), pp. 231–239.

    Article  MathSciNet  MATH  Google Scholar 

  31. U. Kjwrulff, “Triangulation of graphs — Algorithms giving small total state space,” R 9009, Institute for Electronic Systems, Department of Mathematics and Computer Science, University of Aalborg (1990).

    Google Scholar 

  32. P. N. Klein, “A parallel randomized approximation scheme for shortest paths,” Technical Report CS-91–56, Brown University (1991).

    Google Scholar 

  33. P. N. Klein, A. Agrawal, R. Ravi and S. Rao, “Approximation through multicommodity flow,” Proceedings of the 31st Annual IEEE Conference on Foundations of Computer Science, (1990), pp. 726–737.

    Google Scholar 

  34. P. N. Klein, and S. Kang, “Approximating concurrent flow with uniform demands and capacities: an implementation,” Technical Report CS-91–58, Brown University (1991).

    Google Scholar 

  35. P. Klein, C. Stein and E. Tardos, “Leighton-Rao might be practical: faster approximation algorlthme for concurrent flow with uniform capacities,” Proceedings of the 22nd ACM Symposium on Theory of Computing (1990), pp. 310–321.

    Google Scholar 

  36. F. T. Leighton and S. Rao, “An approximate max-flow min-cut theorem for uniform multicommodity flow problems with application to approximation algorithms,” Proceedings of the 29th Annual IEEE Conference on Foundations of Computer Science (1988), pp. 422–431.

    Google Scholar 

  37. F. T. Leighton, F. Makedon and S. Tragoudas, personal communication, 1990

    Google Scholar 

  38. C. Leiserson, and J. Lewis, “Orderings for parallel sparse symmetric factorization,” in Parallel Processing for Scientific Computing,G. Rodrigue, ed., Philadelphia, PA, 1987, SIAM, pp. 27–32.

    Google Scholar 

  39. M. Leuze, “Independent set orderings for parallel matrix factorization by Gaussian elimination,” Parallel Computing, vol. 10 (1989), pp. 177–191.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Lewis, B. Peyton, and A. Pothen, “A fast algorithm for reordering sparse matrices for parallel factorization,” SIAM Journal on Scientific and Statistical Computing, vol. 10 (1989), pp. 1156–1173.

    Article  MathSciNet  Google Scholar 

  41. R. J. Lipton, D. J. Rose and R. E. Tarjan, “Generalized nested dissection,” SIAM Journal on Numerical Analysis 16 (1979), pp. 346–358.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. J. Lipton and R. E. Tarjan, “Applications of a planar separator theorem,” SIAM Journal on Computing 9 (1980), pp. 615–627.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. W. Liu, “Modification of the minimum degree algorithm by multiple elimination,” ACM Transactions on Mathematical Software, vol. 12 (1985), pp. 141–153.

    Article  Google Scholar 

  44. J. W. Liu, “Reordering sparse matrices for parallel elimination,” Parallel Computing, vol. 11 (1989), pp. 73–91.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. W. Liu, “The minimum degree ordering with constraints,” SIAM Journal on Scientific and Statistical Computing, vol. 10 (1989), pp. 1136–1145.

    Article  MATH  Google Scholar 

  46. J. W. Liu, “A graph partitioning algorithm by node separators,” ACM Transactions on Mathematical Software, vol. 15 (1989), pp. 198–219.

    Article  MATH  Google Scholar 

  47. J. W. Liu, “The role of elimination trees in sparse factorization,” SIAM Journal on Matrix Analysis and Applications, vol. 11 (1990), pp. 134–172.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. W. Liu, and A. Mirzaian, “A linear reordering algorithm for parallel pivoting of chordal graphs,” SIAM Journal on Discrete Mathematics, vol. 2 (1989), pp. 100–107.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. W. Liu, and A. H. Sherman, “Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for sparse matrices,” SIAM Journal on Numerical Analysis, vol. 13 (1976), pp. 198–213.

    Article  MathSciNet  MATH  Google Scholar 

  50. F. Makedon, and S. Tragoudas, “Approximating the minimum net expansion: near optimal solutions to circuit partitioning problems,” Manuscript (1991).

    Google Scholar 

  51. S. Parter, “The use of linear graphs in Gaussian elimination,” SIAM Review, vol. 3 (1961), pp. 364–369.

    Article  MathSciNet  Google Scholar 

  52. F. Peters, “Parallel pivoting algorithms for sparse symmetric matrices,” Parallel Computing, vol. 1 (1984), pp. 99–110.

    Article  MATH  Google Scholar 

  53. A. Pothen, “The complexity of optimal elimination trees,” Tech. Report CS-88–16, Department of Computer Science, The Pennsylvania State University, University Park, PA, 1988.

    Google Scholar 

  54. D. J. Rose, “Triangulated graphs and the elimination process,” Journal of Math. Anal. Appl. 32 (1970), p. 597–609.

    Article  MATH  Google Scholar 

  55. D. J. Rose, “A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations,” in Graph Theory and Computing, R. C. Read, ed., Academic Press (1972), pp. 183–217.

    Google Scholar 

  56. D. J. Rose, R. E. Tarjan and G. S. Lueker, “Algorithmic aspects of vertex elimination on graphs,” SIAM J. Comp. 5 (1976), pp. 266–283.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. Schreiber, “A new implementation of sparse Gaussian elimination,” ACM Trans. on Mathematical Software 8: 3 (1982), pp. 256–276.

    Article  MathSciNet  MATH  Google Scholar 

  58. M. Yannakakis, “Computing the minimum fill-in is NP-complete,” SIAM J. Algebraic and Discrete Methods 2 (1981), pp. 77–79.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Agrawal, A., Klein, P., Ravi, R. (1993). Cutting down on Fill Using Nested Dissection: Provably Good Elimination Orderings. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds) Graph Theory and Sparse Matrix Computation. The IMA Volumes in Mathematics and its Applications, vol 56. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8369-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8369-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8371-0

  • Online ISBN: 978-1-4613-8369-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics