Skip to main content

The Concept of a Laminate

  • Conference paper
Book cover Microstructure and Phase Transition

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 54))

Abstract

In connection with phase transitions problems in crystals, the term laminate has been successfully used to describe the behavior of such crystals under some special external loads. We will attempt to give this term a precise mathematical significance and explore its relationship with rank-one convexity, quasiconvexity and Young measures. Roughly speaking, laminates are to rank-one convexity what Young measures are to quasiconvexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Ball and R. James, Fine phase mixtures as minimizers of energy„ Arch. Rat. Mech. Anal., 100(1987), pp. 15–52..

    Google Scholar 

  2. J. M. Ball and R. James, Proposed experimental tests of a theory of fine microstructure and the two well problem.

    Google Scholar 

  3. K. Battacharya, Self accomodation in martensite.

    Google Scholar 

  4. K. Battacharya, Wedge-like microstructure in martensite.

    Google Scholar 

  5. M. Chipot and C. Collins, Numerical approximation in variational problems with potential wells,.

    Google Scholar 

  6. M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Rat. Mech. Anal., 103 (1988), pp. 237–277.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Collins and M. Luskin, The computation of the austenitic-martensitic phase transition,PDE’s and continuum models of phase transitions, Lecture Notes in Physics, 344(1989), (Rascle, M., Serre, D., and Slemrod, M., eds) Springer, pp. 34–50.

    Google Scholar 

  8. C. Collins and M. Luskin, Numerical modelling of the microstructure of crystals with symmetry-related variants,in Proc. ARO US-Japan Workshop on Smart/Intelligent Materials and Systems, Technomic.

    Google Scholar 

  9. C. Collins and M. Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem.

    Google Scholar 

  10. C. Collins, D. Kinderlehrer And M. Luskin, Numerical approximation of the solution of a variational problem with a double well potential,SIAM J. Numer. Anal. (to appear).

    Google Scholar 

  11. B. Dacorogna, Remarques sur les notions de polyconvexité, quasi-convexité et convexité de rang 1, J. Math. Pures Appl., 64 (1985), pp. 403–438.

    MathSciNet  MATH  Google Scholar 

  12. B. Dacorogna, Direct methods in the Calculus of Variations, Springer, 1989.

    Google Scholar 

  13. J. L. Ericksen, On the symmetry of deformable crystals, Arch. Rat. Mech. Anal., 72 (1979), pp. 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. L. Ericksen, Some phase transitions in crystals, Arch. Rat. Mech. Anal., 73 (1980), pp. 99–124.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. L. Ericksen, Changes in symmetry in elastic crystals, in IUTAM Symp. Finite Elasticity (Carlson, D. E. and Shield R. T., eds) M. Nijhoff, (1981), pp. 167–177.

    Google Scholar 

  16. J. L. Ericksen, Ill posed problems in thermoelasticity theory„ in Systems of Nonlinear Partial Differential Equations (Ball, J., ed), D. Reidel, 1983, pp. 71–95.

    Google Scholar 

  17. J. L. Ericksen, The Cauchy and Born hypotheses for crystals, in Phase Transformations and Material Instabilities in Solids, (Gurtin, M., ed), Academic Press, 1984, pp. 61–78.

    Google Scholar 

  18. J. L. Ericksen, Constitutive theory for some constrained elastic crystals, Int. J. Solids Structures, 22 (1986), pp. 951–964.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. L. Ericksen, Stable equilibrium configurations of elastic crystals, Arch. Rat. Mech. Anal., 94 (1986), pp. 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. L. Ericksen, Twinning of crystals I, in Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3, (Antman. S., Ericksen, J. L., Kinderlehrer, D., and Müller, I., eds), Springer, 1987, pp. 77–96.

    Google Scholar 

  21. N. B. Firoozye, Optimal Translations and Relaxations of some Multiwell Energies,PhD Thesis, Courant Institute, New York University.

    Google Scholar 

  22. N. B. Firoozye, Optimal Use of the Translation Method and Relaxations of Variational Problems.

    Google Scholar 

  23. N. B. Firoozye, Optimal Use of the Translation Method and Relaxations of Variational Problems.

    Google Scholar 

  24. R. D. James AND D. Kinderlehrer, Theory of diffusionless phase transitions, PDE’s and continuum models of phase transitions, Lecture Notes in Physics, 344 (Rascle, M., Serre, D., and Slemrod, M., eds) (1989), pp. 51–84, Springer.

    Google Scholar 

  25. D. Kinderlehrer Remarks about the equilibrium configurations of crystals in Proc. Symp. Material instabilities in continuum mechanics Heriot-Watt (Ball J. M. ed) Oxford1988 pp. 217–242.

    Google Scholar 

  26. D. Kinderlehrer And P. Pedregal Characterizations of gradient Young measures Arch. Rat. Mech. Anal. (to appear).

    Google Scholar 

  27. D. Kinderlehrer And P. Pedregal Remarks about Young measures supported on two wells.

    Google Scholar 

  28. R. V. Kohn, The relationship between linear and non-linear variational models of coherent phase transitions, in Proc. of Seventh Army Conf. on Appl. Math. and Computing, West Point, June 1989.

    Google Scholar 

  29. M. Chipot and C. Collins, Numerical approximation in variational problems with potential wells,.

    Google Scholar 

  30. R. V. Kohn The relaxation of a Double-Well Energy.

    Google Scholar 

  31. J.Matos, The absence of fine microstructure in a-p quartz.

    Google Scholar 

  32. J. Matos PhD Thesis University of Minnesota.

    Google Scholar 

  33. P. Pedregal Laminates and Microstructure.

    Google Scholar 

  34. P. Pedregal PhD Thesis University of Minnesota.

    Google Scholar 

  35. A. C. Pipkin, Elastic materials with two preferred states, Preprint, Aug. 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Pedergal, P. (1993). The Concept of a Laminate. In: Kinderlehrer, D., James, R., Luskin, M., Ericksen, J.L. (eds) Microstructure and Phase Transition. The IMA Volumes in Mathematics and its Applications, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8360-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8360-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8362-8

  • Online ISBN: 978-1-4613-8360-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics