Skip to main content

Geometric Parameters and the Relaxation of Multiwell Energies

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 54))

Abstract

This paper discusses the relaxation of a multiwell energy of the special form W = mini{|▽u − ai|2}. We explain how the relaxation QW can be expressed in terms of certain “tensors of geometric parameters.” The exact set ℱθ of attainable geometric parameters is not known, but we show that it must lie inside an explicitly given convex set ℱ U θ . This leads to a new Geometric Parameters Lower Bound for QW. For the special case of threewells in two space dimensions we give a complete characterization of the extreme points of ℱ U θ . The final section addresses the “three gradient problem,” which asks whether three pairwise incompatible gradients can nevertheless be mutually compatible. We do not solve this problem, but we show that it is linked to the attainability of the type 3 extreme points of ℱ U θ .

The work of NBF was supported in part by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation and the U.S. Army Research Office. An earlier version of this work appeared as part of NBF’s Ph.D. Thesis, Optimal Translations and Relaxations of Some Multiwell Energies, New York University, August 1990.

The work of RVK was supported in part by NSF grant DMS-8701895, ONR grant N00014-88-K-0279, AFOSR grant 90-0090, ARO contract DAAL03-89-K-0039, and DARPA contract F49620-87-C-0065.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acerbi, E. And Fusco, N., Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. and Anal., 86 (1984), pp. 125–145.

    Article  MathSciNet  MATH  Google Scholar 

  2. Avellaneda, M., Optimal bounds and microgeometrics for elastic two-phase composites, SIAM J. Appl. Math. 47 (1987), pp. 1216–1228.

    MathSciNet  MATH  Google Scholar 

  3. Ball, J., A version of the fundamental theorem for Young Measures, in Partial Differential Equations and Continuum Models of Phase Transitions, M. Rasele et al. eds., Lecture Notes in Physics No. 344, Springer-Verlag (1989), pp. 207–215.

    Google Scholar 

  4. Ball, J. and James, R., Fine phase mixtures as minimizers of energy, Arch. R.t. Mech. and Anal., 100 (1987), pp. 13–52.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, J. And James, R., Proposed experimental tests of a theory of fine microstructure and the two-well problem, preprint, 1991.

    Google Scholar 

  6. Bhattacharya, K.; Firoozye, N.;James, R.; And Kohn, R., Restriction on microstructure,in preparation.

    Google Scholar 

  7. Dacorogna, B., Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Func. Anal., 46 (1982), pp. 102–118.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dacorogna, B., Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1, J. Math. Pures Appl., 64 (1985), pp. 403–438.

    MathSciNet  MATH  Google Scholar 

  9. Dacorogna, B., Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin 1989.

    MATH  Google Scholar 

  10. Firoozye, N., Optimal Translations and Relaxations of Some Multiwell Energies, Ph.D. Thesis, NYU, 1990.

    Google Scholar 

  11. Firoozye, N., On the relaxation of a class of isotropic, frame-indifferent elastic energies,in preparation.

    Google Scholar 

  12. Firoozye, N., Optimal use of the translation method and relaxations of variational problems,Comm. Pure. Appl. Math., to appear.

    Google Scholar 

  13. Gerard, P., Moyennisation et regularité 2-microlocale,Ann. Scient. de l’Ecole Norm. Sup., to appear.

    Google Scholar 

  14. James, R. And Kinderlehrer, D., Theory of diffusionless phase transitions, in Partial Differential Equations and Continuum Models of Phase Transitions, M. Rascle et al. eds., Lecture Notes in Physics No. 344, Springer-Verlag (1989), pp. 51–84.

    Google Scholar 

  15. Khachaturyan, A., Theory of Structural Transformations in Solids, John Wiley and Sons, New York, 1983.

    Google Scholar 

  16. Kinderlehrer, D. And Pedregal, P., Weak convergence of integrands and the Young measure representation, I.M.A. Preprint #700, Sept 1990.

    Google Scholar 

  17. Kohn, R., The relaxation of a double well energy,Continuum Mechanics and Thermodynamics, to appear.

    Google Scholar 

  18. Kohn, R. And Strang, G., Optimal design and relaxation of variational problems, I-117,Comm. Pure Appl. Math., 39 (1986), pp. 113–137, 139–182, and 353–377.

    Google Scholar 

  19. Kohn, R. And Vogelius, M., Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math., 40 (1987), pp. 745–777.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lurie, K. And Cherkaev, A., On a certain variational problem of phase equilibrium, in Material Instabilities in Continuum Mechanics, J.M. Ball ed., Oxford Univ. Press (1988), pp. 257–268.

    Google Scholar 

  21. Matos, J., Some Mathematical Methods of Mechanics, Ph.D. Thesis, Univ. of Minn., 1990.

    Google Scholar 

  22. Milton, G. and Nesi, V., Polycrystalline configurations that maximize electrical resistivity,J. Mech. Phys. Solids, to appear.

    Google Scholar 

  23. Pedregal, P., Topics in Non-Linear Analysis, Ph.D. Thesis, Univ. of Minn., 1989.

    Google Scholar 

  24. Pipkin, A., Elastic materials with two preferred states, Q.J. Mech. Appl. Math., to appear.

    Google Scholar 

  25. Roitburd, A., Martensitic transformation as a typical phase transformation in solids, in Solid State Physics 33, Academic Press (1978), pp. 317–390.

    Google Scholar 

  26. Šverâk, V., Quasiconvex functions with subquadratic growth at infinity, preprint, 1990.

    Google Scholar 

  27. Šverak V., to appear.

    Google Scholar 

  28. Tartar, L., Estimations fines des coefficients homogégéisés, in Ennio de Georgi’s Colloquium, P. Krée ed., Pitman Research Notes in Mathematics (1985), pp. 168–187.

    Google Scholar 

  29. Tartar, L., H-measures, a new approach for studying homogenization, oscillations, and concentration effects in partial differential equations, Prof. Roy. Soc., Edinburgh, 115A (1990), pp. 193–230.

    MathSciNet  MATH  Google Scholar 

  30. Zhang, K., Construction of quasi con vex functions with linear growth at infinity, preprint, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Firoozye, N.B., Kohn, R.V. (1993). Geometric Parameters and the Relaxation of Multiwell Energies. In: Kinderlehrer, D., James, R., Luskin, M., Ericksen, J.L. (eds) Microstructure and Phase Transition. The IMA Volumes in Mathematics and its Applications, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8360-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8360-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8362-8

  • Online ISBN: 978-1-4613-8360-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics