Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 52))

Abstract

Localized phase transitions as well as shock waves can often be modeled by material discontinuities satisfying Rankine-Hugoniot (RH) jump conditions. The use of Maxwell, Gibbs-Thompson, Hertz-Knudsen, and similar (supplementary to RH) relations in the theory of dynamic phase changes suggest that the classical system of jump conditions is at least incomplete in the case of phase transitions. While the propagation of a shock wave is completely determined by the conservations laws, the boundary conditions of the problem and the condition that the entropy increases in the process, the same is not true for the propagation of phase boundaries. Additional condition must be added to the RH conditions in order to provide sufficient data for the unique determination of the transformation process. The necessity was tacitly assumed by those who attacked the calculation of the phase boundary velocity without even trying to determine this parameter from the conservation laws and boundary conditions alone.

In order to be able to point out the contrast between shock waves and phase boundaries we treat both of them on the basis of the same assumption that the process takes place over a zone of finite width and consider a rather general model of the internal structure of the interface with special emphasis on the interplay between dispersion and dissipation effects. Our extended model of the continuum, capable of describing a “thick” interface, incorporates a weak form of nonlocality together with a number of dissipative mechanisms. Analysis of a model-type solution of the structure problem clarifies the distinction between supersonic (shock) and subsonic(kink) discontinuities and provides explicit examples of additional jump relations in the case of kinks (which simulate subsonic phase boundaries).

It is emphasized, that an extended system of jump relations for kinks may depend on the ratios of internal scales of length introduced by a more detailed description. An original theory, which provides discontinuous solutions, must therefore be complemented by these nondimensional parameters, even though internal scales by themselves are considered to be zero in this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abeyaratne, An Admissibility Condition for Equilibrium Shocks in Finite Elasticity, J. Elast., 13 (1983), pp. 175–184.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Abeyaratne, J.K. Knowles, Non-Elliptic Elastic Materials and the Modeling of Elastic-Plastic Behavior for Finite Deformations, J. Mech. Phys. Solids 35 (1987), pp. 343–365.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. Abeyaratne, J.K. Knowles, On the Driving Traction Acting on a Surface of Strain Discontinuity in a Continuum, J. Mech. Phys. Solids, v. 38, n. 3 (1990), pp. 345–360.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. Abeyaratne, J.K. Knowles, Implications of Viscosity and Strain Gradient Effects for the Kinetics of Propagating Phase boundaries in Solids, preprint (1990).

    Google Scholar 

  5. S.S. Antman, R. Malek-Madani, Dissipative Mechanism, In: Metastability and Incompletely Posed Problems, ed. S.S. Antman, J.L. Ericksen, D. Kinderlehrer and I. Muller, IMA v. 3, Springer-Verlag (1987), pp. 1–16.

    Google Scholar 

  6. D.B. Aronson, H.F. Weinberger, Nonlinear Diffusion in Population Genetics, In: Partial Differential Equations, ed. J. Goldstein, Springer Lecture Notes in Mathematics, 446 (1975).

    Google Scholar 

  7. J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego, P.J. Swart, On the Dynamics of Fine Structure, J. Nonlinear Sci., 1 (1991), pp. 17–70.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. G.I. Barenblatt, Similarity, Self-similarity and Intermediate Asymptotics, Dimensional Analysis, Gordon and Breach (1987).

    Google Scholar 

  9. G.I. Barenblatt, Methods of Combustion Theory in the Mechanics of Deformation, Flow and Fracture of Polymers, In Deformation and Fracture of High Polymers (ed. H.H. Rausch, J.A. Hassell and R.I. Jaffe ), Plenum Press, New York (1974), p. 91.

    Google Scholar 

  10. G.I. Barenblatt, V.M. Entov, V.M. Ryzhik, Theory of Fluid Flows Through Natural Rocks, Kluwer (1990).

    MATH  Google Scholar 

  11. G.R. Barsch, J.A. Krumhansl, Twin Boundaries in Ferroelectric Media without Interface Dislocations, Phys. Rev. Lett., v. 53, n. 11 (1984), pp. 1069–1072.

    Article  ADS  Google Scholar 

  12. J.L. Boldrini, Asymptotic Behavior of Travelling Wave Solutions of the Equations for the Flow of a Fluid With Small Viscosity and Capillarity, Q. Appl. Math., v. XLIV, n. 4 (1987), pp. 697–708.

    MathSciNet  Google Scholar 

  13. L. Bronsard, R.V. Kohn, Motion by Mean Curvature as a Singular Limit of Ginsburg-Landau Dynamics J. Diff. Eqn., (1990), to appear.

    Google Scholar 

  14. M. Buttiker, H. Thomas, Propagation and Stability of Kinks in Driven and Damped Nonlinear Klein-Gordon Chains, Phys. Rev. A, v. 37, n. 1 (1988).

    Google Scholar 

  15. J.W. Cahn, J.E. Hilliard, Free Energy of a Nonuniform System I. Inter facial Free Energy, J. Chem. Phys., 28 (1957), pp. 258–267.

    Article  ADS  Google Scholar 

  16. G. Caginalp, An Analysis of a Phase Field Model of a Free Boundary, Arch. Rat. Mech. Anal., v. 92 (1986), pp. 205–245.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Casal, Capillarite Interne en Mecanique des Milieux Continus, C.R. Acad. Sc. Paris 256 (1963), p. 3820.

    MATH  Google Scholar 

  18. P. Casal, K. Gouin, Invariance Properties of In viscid Fluids of Grade N, Proceedings PDE’s and Continuum Models of Phase Transitions, Lect. Notes Phys. 344 (1989), pp. 85–98.

    Article  MathSciNet  ADS  Google Scholar 

  19. C.M. Dafermos, The Entropy Rate Admissibility Criterion for Solutions of Hyperbolic Conservation Laws, J. Diff. Eq., 14 (1973), pp. 202–212.

    Article  MathSciNet  MATH  Google Scholar 

  20. C.M. Dafermos, Dissipation, Stabilization and the Second law of Thermodynamics In: Lecture Notes in Physics 228, “Thermodynamics and Constitutive Equations” (ed. G. Grioli) (1985), pp. 44–88.

    Chapter  Google Scholar 

  21. J.E. Dunn, Interstitial Working and a Nonclassical Continuum Thermodynamies, In: New Perspectives in Thermodynamics, ed. J. Serrin and G. Sell, Springer-Verlag (1986).

    Google Scholar 

  22. J.E. Dunn, J. Serrin, On the Thermodynamics of Interstitial Working, Arch. Rat. Mech. Anal. 88 (1985), pp. 95–133.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.L. Ericksen, Liquid Crystals with Variable Degree of Orientation, Arch. Rat. Mech. Anal. 113 (1991), pp. 97–120.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.L. Ericksen, Introduction to the Thermodynamics of Solids, Chapman & Hall (1991).

    MATH  Google Scholar 

  25. J.D. Eshelby, Continuum Theory of Lattice Defects, in Solid State Physics, (F. Seitz and D. Turnbull, editors), vol. 3, Academic Press, New York (1956), pp. 79–144.

    Google Scholar 

  26. J.D. Eshelby, Energy Relations and the Energy Momentum Tensor in Continuum Mechanics In: Inelastic Behavior of Solids, ed. M.F. Kanninen et al., McGraw-Hill, New York (1970), pp. 77–115.

    Google Scholar 

  27. F. Falk, E.W. Laedke, K.H. Spatschek, Stability of Solitary-Wave Pulses in Shape-Memory Alloys, Phys. Rev. B, v. 36, n. 2 (1987), pp. 3031–3040.

    Article  ADS  Google Scholar 

  28. H.-T. Fan, M. Slemrod, The Riemann Problem for Systems of Conservation Laws of Mixed Type, Preprint (1991).

    Google Scholar 

  29. B.V. Felderhof, Dynamics of the Diffuse Gas-Liquid Interface Near the Critical Point, Physica, 48 (1970), pp. 541–560.

    Article  ADS  Google Scholar 

  30. L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press (1990).

    Book  MATH  Google Scholar 

  31. K.O. Friedrichs, On the Mathematical Theory of Deflagrations and Detonations, In: Lectures in Combustion Theory, ed. S.Z. Burskin, P.D. Lax, and G.A. Sod, New York University (1978).

    Google Scholar 

  32. I.M. Gelfand, Some Problems in the Theory of Quasilinear Equations, Usp. Mat. Nauk. 14, 2 (1959), pp. 87–158.

    Google Scholar 

  33. J. Glimm, The Continuous Structure of Discontinuities, Proceedings PDE’s and Continuum Models of Phase Transitions, Lect. Notes Phys. 344 (1989), pp. 177–186.

    MathSciNet  ADS  Google Scholar 

  34. J. Glimm, Nonlinear Waves: Overview and Problems In: ed. J. Glimm, A.J. Majda, Multidimensional Hyperbolic Problems and Computations, IMA v. 29, Springer-Verlag (1991), pp. 89–106.

    Google Scholar 

  35. M. Grinfeld, Isothermal Dynamic Phase Transitions: Existence of “Cavitation Waves”, Proc. Royal Soc. of Edinburgh, Sect. A., 107 A (1987), pp. 153–163.

    MathSciNet  MATH  Google Scholar 

  36. M. Grinfeld, Nonisothermal Dynamic Phase Transitions, Quart. Appl. Math., V. XLVII (1989), pp. 71–84.

    Google Scholar 

  37. H. Gouin. Fliche, Film Boiling Phenomena in Liquid-Vapor Interfaces, In: Adiabatic Waves in Liquid-Vapor Systems, ed. G.E.A. Meier, P.A. Thompson, Springer-Verlag (1990).

    Google Scholar 

  38. M.E. Gurtin, The Gradient Theory of Phase Transitions on a Finite Interval, In: Phase Transformations and Material Instabilities in Solids, Academic Press (1984), pp. 99–112.

    Google Scholar 

  39. M.E. Gurtin, On Diffusion in Two-Phase Systems: The Sharp Interface Versus the Transition Layer Proceedings PDE’s and Continuum Models of Phase Transitions, Lect. Notes Phys. 344 (1989), pp. 99–112.

    Article  MathSciNet  ADS  Google Scholar 

  40. M.E. Gurtin, On a Nonequilibrium Thermodynamics of Capillarity and Phase, Quart. Appl. Math., v. XLVII (1989), pp. 129–145.

    Google Scholar 

  41. M.E. Gurtin, Thermomechanics of Evolving Phase Boundaries, Tutorial Lectures, Preprint IMA, Minneapolis (1990).

    Google Scholar 

  42. M.E. Gurtin, A. Struthers, Multiphase Thermomechanics With Inter facial Structure, 3. Evolving Phase Boundaries in the Presence of Bulk Deformation, A.ch. Rat. Mech. Anal., v. 112, n. 3 (1990), pp. 97–160.

    Article  MathSciNet  MATH  Google Scholar 

  43. M.E. Gurtin, C. Yatomi, On the Energy Release Rate in Elastodynamic Crack Propagation, Arch. Eat. Mech. Anal., v. 74 (1980), pp. 231–247.

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Hagan, J. Serrin, Dynamic Changes of Phase in a Van der Waals Fluid, in New Perspective in Thermodynamics, Ed. J. Serrin, Springer-Verlag (1985).

    Google Scholar 

  45. R. Hagan, M. Slemrod, The Viscosity-Capillarity Admissibility Criterion for Shocks and Phase Transitions, Arch. Rat. M.ch. Anal. 83 (1984), pp. 333–361.

    Article  MathSciNet  Google Scholar 

  46. P.C. Hohenberg, B.I. Halperin, Theory of Dynamic Critical Phenomena, Rev. Mod. Phys. 49 (1977), pp. 435–480.

    Article  ADS  Google Scholar 

  47. J.W. Hutchinson, K.W. Neale, Neck Propagation, J. Mech. Phys. Solids, v. 31, No. 5 (1983), pp. 405–426.

    Article  ADS  MATH  Google Scholar 

  48. H. Hattori, The Riemann Problem for a Van-der-Waals fluid with Entropy Rate Admissibility Criterion Nonisothermal case, J. Diff. Eqs. 65 (1986), pp. 158–174.

    Article  MathSciNet  MATH  Google Scholar 

  49. R.D. James, The Propagation of Phase Boundaries in Elastic Bars, Arch. Rat. Mech. Anal. 73 (1980), pp. 125–158.

    Article  MATH  Google Scholar 

  50. L.M. Kachanov, Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publ. (1986).

    MATH  Google Scholar 

  51. B.L. Keyfitz, Admissibility Conditions for Shocks in Conservation Laws That Change Type, Proceedings of GAMM International Conference on Problems Involving Change of Type ed. K. Kirchgassner, Lecture Notes in Mathematics, Springer-Verlag, to appear.

    Google Scholar 

  52. J.K. Knowles, On the Dissipation Associated With Equilibrium Shocks in Finite Elasticity, J. Elast., 9 (1979), pp. 131–158.

    Article  MathSciNet  MATH  Google Scholar 

  53. L.D. Landau, E.M. Lifchitz, Physics of Fluids, Pergamon Press, Osford (1975).

    Google Scholar 

  54. L.D. Landau, E.M. Lifchitz, Theory of Elasticity (3rd ed.), Pergamon Press, Oxford (1986).

    Google Scholar 

  55. R. Landauer, Phase Transition Waves: Solitons Versus Shock Waves, J. Appl. Phys., 51 (11) (1980), pp. 5594–5600.

    Article  ADS  Google Scholar 

  56. P.D. Lax, Shock Waves and Entropy , In “ Contributions to Nonlinear Functional Analysis E.A. Zarantonello, Ed., Academic Press, NY (1971).

    Google Scholar 

  57. F.M. Leslie, Theory of Flow Phenomena in Liquid Crystals, Advances in Liquid Crystals, v. 4 (1979), pp. 1–81.

    Google Scholar 

  58. J. Lin, T.J. Pence, On The Energy Dissipation Due To Wave Ringing in Non-Elliptic Elastic Materials, preprint (1991).

    Google Scholar 

  59. T.P. Liu, Admissible Solutions of Hyperbolic Conservation Laws, Amer. Math. Soc. Memoirs, # 240 Providence (1981), pp. 1–78.

    Google Scholar 

  60. B.A. Malomed, E.N. Rumanov, “Natural” Velocity of the Boundary Between Phases, Dokl. Acad. Nauk. SSSR, 284 (1985), pp. 1355–1359.

    Google Scholar 

  61. L.I. Mandelstam, M.A. Leontovich, Attenuation of Sound in Liquids, JETP, v. 7, n. 3 (1937), pp. 438–449.

    Google Scholar 

  62. K. Mischiakow, Dynamic Phase Transitions: a Connection Matrix Approach, In: Nonlinear Evolution Equations That Change Type, IMA v. 27, ed. B.L. Keyfîtz, M. Shearer, Springer-Verlag (1990), pp. 164–180.

    Google Scholar 

  63. A. Novick-Cohen, L.A. Segel, Nonlinear aspects of the Cahn-Hilliard Equation, Physica (D) 10 (1986), pp. 277–298.

    MathSciNet  ADS  Google Scholar 

  64. R.L. Pego, Front Migration in the Nonlinear Cahn-Hilliard Equations, Proc. R. Soc. London, A 422 (1989), pp. 261–278.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. R. Pego, Phase Transitions in a One Dimensional Nonlinear Viscoelasticity: Admissibility and Stability, Arch. Rat. Mech. Anal. 97 (1987), pp. 353–394.

    Article  MathSciNet  MATH  Google Scholar 

  66. T.J. Pence, On the Emergence and Propagation of the Phase Boundary in an Elastic Bar With a Suddenly Applied End Load, J. Elast. 16 (1986), pp. 3–42.

    Article  MathSciNet  MATH  Google Scholar 

  67. O. Penrose, P.C. Fife, Thermodynamically Consistent Models of Phase Field Type for the Kinetics of Phase Transformations, Physica D, 43 (1990), pp. 44–62.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. R.L. Rabie, G.R. Fowles, and W. Fickett, The Polymorphic Detonation, Phys. Fluids, v. 22 (1979), pp. 422–435.

    Article  ADS  Google Scholar 

  69. J.R. Rice, Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms, In: Constitutive Equations in Plasticity (A.S. Argon, editor), MIT Press, Cambridge, Mass. (1975), pp. 23–79.

    Google Scholar 

  70. J.R. Rice, Thermodynamics of the Quasi-Static Growth of Griffith Crack, J. Mech. Phys. Solids, v. 26 (1978), pp. 61–78.

    Article  ADS  MATH  Google Scholar 

  71. A.B. Roshin, L. Truskinovsky, Model of Weakly Nonlocal Relaxing Compressible Media, J. Appl. Math. Mech. (PMM), v. 53 (6) (1989), pp. 904–910.

    Google Scholar 

  72. A.B. Roshin, L. Truskinovsky, Structure of the Isothermal Shock in a Weakly Nonlocal Relaxing Compressible Medium, Preprint 1988, also Dokl. Akad. Nauk. SSSR, v. 311 (1990), pp. 1347–1351.

    Google Scholar 

  73. J.B. Serrin, Phase Transition an Interfacial Layers for Van der Waals Fluids, in “Proceedings SAFA VI Conference”, Naples (1980), pp. 167–175.

    Google Scholar 

  74. M. Shearer, The Riemann Problem for a Class of Conservation Laws of Mixed Type, J. Diff. Eq. 46 (1982), pp. 426–443.

    Article  MathSciNet  MATH  Google Scholar 

  75. M. Shearer, Admissibility Criteria for Shock Wave Solutions of a System of Conservation Laws of Mixed Type, Proc. Royal Soc. Edinburgh, 93 (1983), pp. 233–244.

    MathSciNet  MATH  Google Scholar 

  76. M. Shearer, Nonuniqueness of Admissible Solutions of Riemann Initial Value Problems for a System of Conservation Laws of Mixed Type, Arch. Rat. Mech. Anal. 93 (1986), pp. 45–59.

    Article  MathSciNet  MATH  Google Scholar 

  77. M. Shearer, The Riemann Problem For 2x2 Systems of Hyperbolic Conservation Laws With Case 1 Quadratic Nonlinearities, J. of Diff. Eq., v. 80, n. 2 (1989), pp. 343–363.

    Article  MathSciNet  MATH  Google Scholar 

  78. M. Silhavy, An Admissibility Criterion for Shocks and Propagating Phase Boundaries via Thermodynamics of Nonsimple Materials 1, 2, J. Nonequilib Thermodyn., v. 9 (1984), pp. 177–200.

    Article  ADS  MATH  Google Scholar 

  79. M. Slemrod, Admissibility Criteria for Propagating Phase Boundaries in a Van der Waals Fluid, Arch. Rat. Mech. Anal., 81 (1983), pp. 301–315.

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Slemrod, Dynamics of First-order Phase Transitions, In: Phase Transformations and Material Instabilities in Solids, ed. Gurtin, Academic Press, NY (1984), pp. 163–203.

    Google Scholar 

  81. M. Slemrod, Dynamic Phase Transitions in a Van der Waals Fluid, J. Diff. Eqs. 52 (1984), pp. 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  82. P.A. Thompson, G.C. Carofano, Y.-G. Kim, Shock Waves and Phase Changes in a Large Heat Capacity Fluid Emerging From a Tube, J. Fluid Mech., v. 166 (1987), pp. 57–92.

    Article  ADS  Google Scholar 

  83. L. Truskinovsky, Equilibrium Interphase Boundaries, Dokl. Akad. Nauk. SSSR, v. 275, n. 2 (1982), pp. 306–310.

    MathSciNet  Google Scholar 

  84. L. Truskinovsky, Critical Nuclei in the Van der Waals Model, Dokl. Akad. Nauk. SSSR, v. 269, n. 3 (1983), pp. 587–592.

    MathSciNet  Google Scholar 

  85. L. Truskinovsky, Structure of an Isothermal Phase Jump, Dokl. Acad. Nauk. SSSR, 285 (2) (1985), pp. 309–315.

    MathSciNet  Google Scholar 

  86. L. Truskinovsky, Dynamics of Nonequllibrium Phase Boundaries in a Heat Conducting Nonlinear Elastic Medium, J. Appl. Math, and Mech. (PMM), 51 (1987), pp. 777–784.

    Article  MathSciNet  ADS  Google Scholar 

  87. L. Truskinovsky, Nonequilibrium Phase Boundaries, Dokl. Akad. Nauk. SSSR, 303 (6) (1988), pp. 1337–1342.

    Google Scholar 

  88. L. Truskinovsky, Inertial Effects in the Dynamics of Martensitic Phase Boundaries, In Shape-Memory Materials and Phenomena — Fundamental Aspects and Applications, ed. C.T. Liu, M. Wuttig, K. Otsuka, H. Kunsmann, MRS, v. 246 (1991).

    Google Scholar 

  89. A.P. Umantsev, A.L. Roitburd, Nonisothermal Relaxation in Nonlocal Media, Soviet Phys. Solids (FTT), v. 4 (1988), p. 613.

    Google Scholar 

  90. A.L. Velikovitch, M.A. Lieberman, Physics of Shock Waves in Gases and Plasmas, Springer-Verlag, 1989.

    Google Scholar 

  91. Ya. B. Zel’dovich, G.I. Barenblatt, V.B. Librovich and G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum Press, N.Y., London (1985).

    Book  Google Scholar 

  92. Ya. B. Zel’dovich, D.A. Frank-Kamenetskii, The Theory of Flame Propagation, D.kl. Akad. Nauk. SSSR, v. 19 (1938), pp. 693–695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Truskinovsky, L. (1993). Kinks versus Shocks. In: Dunn, J.E., Fosdick, R., Slemrod, M. (eds) Shock Induced Transitions and Phase Structures in General Media. The IMA Volumes in Mathematics and its Applications, vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8348-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8348-2_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8350-5

  • Online ISBN: 978-1-4613-8348-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics