Advertisement

Proton Flux Across Model and Biological Membranes

  • D. W. Deamer

Abstract

A major function of biological membranes is to act as barriers to the free diffusion of ions. This is most clearly seen when one considers the consequences if membranes were freely permeable: Chloroplasts and mitochondria would be unable to synthesize ATP, nerve impulses could not be produced, muscles could not function and blood cells would hemolyse. For these reasons, bio physicists have long been interested in the nature of the barrier to ion flux.

Keywords

Lipid Bilayer Biological Membrane Proton Conductance Permeability Coefficient Hydrogen Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biegel, C.M. and Gould, J.M. (1981). Kinetics of hydrogen ion diffusion across phospholipid vesicle membranes. Biochemistry 20, 3474.PubMedCrossRefGoogle Scholar
  2. Cafiso, D.S. and Hubbell, W.L. (1981). Spin label detection of electrogenic proton fluxes in phospholipid vesicles. Biophys. J. 33, 114a.Google Scholar
  3. Clement, N.R. and Gould, J.M. (1981). Pyranine as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry 20, 1534.PubMedCrossRefGoogle Scholar
  4. Crandell, E.D., Klocke, R.A., and Forster, R.E. (1971). Hydroxyl ion movement across the human erythrocyte membrane. J. Gen. Physiol. 57, 664.CrossRefGoogle Scholar
  5. Deamer, D.W., Prince, R.C., and Crofts, A.R. (1972). The response of fluorescent amines to pH gradients across liposome membranes. Biochim. Biophys. Acta 274, 323.PubMedCrossRefGoogle Scholar
  6. Finkelstein, A. and Cass, A. (1968). Permeability and electrical properties of thin lipid membranes. J. Gen. Physiol. 52, 145s.CrossRefGoogle Scholar
  7. Gutknecht, J. and Walter, A. (1981). Transport of protons and hydrochloric acid through lipid bilayer membranes. Biochim. Biophys. Acta 641, 183.PubMedCrossRefGoogle Scholar
  8. Hauser, H., Oldani, D., and Phillips, M.C. (1973). Mechanism of ion escape from phosphatidylcholine and phosphatidylservine single bilayer vesicles. Biochemistry 12, 4507.PubMedCrossRefGoogle Scholar
  9. Izutsu, K.T. (1972). Intracellular pH, H ion flux and H ion permeability coefficient in bullfrog toe muscle. J. Physiol. (London) 221, 15.Google Scholar
  10. Meissner, C. and Young, R.C. (1980). Proton permeability of sarcoplasmic reticulum vesicles. J. Biol Chem. 255, 6814.PubMedGoogle Scholar
  11. Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, 144–148.PubMedCrossRefGoogle Scholar
  12. Mitchell, P. (1966). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev. 41, 445.PubMedCrossRefGoogle Scholar
  13. Mitchell, P. and Moyle, J. (1967). Acid-base titration across the membrane system of rat liver mitochondria. Biochem. J. 104, 588.PubMedGoogle Scholar
  14. Nagle, J.F. and Morowitz, H.J. (1978). Molecular mechanisms for proton transport in membranes. Proc. Natl Acad. Sci. USA 75, 298.PubMedCrossRefGoogle Scholar
  15. Nichols, J.W. and Deamer, D.W. (1980). Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique. Proc. Natl Acad. Sci. USA 77, 2038.PubMedCrossRefGoogle Scholar
  16. Nichols, J.W., Hill, M.W., Bangham, A.D., and Deamer, D.W. (1980). Measurement of net proton-hydroxyl permeability of large unilamellar liposomes with the fluorescent pH probe α-aminoacridine. Biochim. Biophys. Acta 596, 393.PubMedCrossRefGoogle Scholar
  17. Nozaki, Y. and Tanford, C. (1981). Proton and hydroxyl ion permeability of phospholipid vesicles. Proc. Natl Acad. Sci. USA 78, 4324.PubMedCrossRefGoogle Scholar
  18. Papahadjopoulos, D., Jacobson, K., Nir, S., and Issac, T. (1973). Phase transitions in phospholipid vesicles. Biochim. Biophys. Acta 311, 330.PubMedCrossRefGoogle Scholar
  19. Traüble, H. (1971). The movement of water across lipid membranes: A molecular theory. J. Membr. Biol 4, 193.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • D. W. Deamer

There are no affiliations available

Personalised recommendations