Skip to main content

Spectrophotometry and Fluorometry in Ion Transport Epithelia

  • Chapter
Book cover Measurement of Ion Transport and Metabolic Rate in Insects

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

  • 84 Accesses

Abstract

The subject of this chapter is the use of spectrophotometry and fluorometry to monitor the redox state of respiratory enzymes in intact epithelial tissues, with an emphasis on insect epithelia. These optical methods were used initially in isolated mitochondria and later in a variety of intact tissues in vitro and even in vivo. Their main advantages reside in being rapid and noninvasive, the latter allowing the optical monitoring to be performed in conjunction with other types of measurements normally used to assess epithelial function. Spectrophotometry and fluorometry of intact epithelia have provided novel information not obtainable by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson E, Harvey WR (1966) Active transport by the Cecropia midgut II. Fine structure of the midgut epithelium. J Cell Biol 31:107–134

    Article  PubMed  CAS  Google Scholar 

  • Avi-Dor Y, Olson JM, Doherty MD, Kaplan ND (1962) Fluorescence of pyridine nucleotides in mitochondria. J Biol Chem 237:2377–2383

    CAS  Google Scholar 

  • Balaban RS, Mandel LJ (1980) Steady state kinetics of NAD reduction by meta­bolic substrates in the intact renal cell. Proceedings of the International Union of Physiological Sciences, 28th International Congress, Vol 14, p 310. Hungarian Physiological Society, Budapest

    Google Scholar 

  • Balaban, RS, Mandel, LJ, Soltoff S, Storey JM (1980a) Coupling of Na-K­ATPase activity to aerobic respiratory rate in isolated cortical tubules from the rabbit kidney. Proc Natl Acad Sci USA 77:447–451

    Article  CAS  Google Scholar 

  • Balaban RS, Soltoff S, Storey JM, Mandel LJ (1980b) Improved renal cortical tubule suspension: Spectrophotometric study of 02 delivery. Am J Physiol 238:F50–F59

    CAS  Google Scholar 

  • Balaban RS, Sylvia AL (1981) Spectrophotometric monitoring of 02 delivery to the exposed rat kidney. Am J Physiol 241:F257–F262

    PubMed  CAS  Google Scholar 

  • Balaban RS, Dennis VW, Mandel LJ (1981) Microfluorometric monitoring of NAD redox state in isolated perfused renal tubules. Am J Physiol 240: F337–F342

    PubMed  CAS  Google Scholar 

  • Balaban RS, Harris SI, Soltoff SP, Storey JM, Mandel LJ (1983) Cellular meta­bolic control. The relationship between active ion transport and aerobic metabolism in rabbit kidney cortex. Submitted for publication

    Google Scholar 

  • Blankemeyer JT (1981) Characteristics of the decay of the spontaneous poten­tial difference due to active potassium transport in the insect midgut epithe­lium. Fed Proc 40:374 (Abstract)

    Google Scholar 

  • Chance B (1951) Rapid and sensitive spectrophotometry III. A double-beam apparatus. Rev Sci Instrum 22:634–638

    Article  CAS  Google Scholar 

  • Chance B (1954) Spectrophotometry of intracellular respiratory pigments. Science 120:767–775

    Article  PubMed  CAS  Google Scholar 

  • Chance B (1957) Techniques for the assay of the respiratory enzymes. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, Vol IV, pp 273­-329. Academic Press, New York

    Google Scholar 

  • Chance B, Jöbsis FF (1959) Changes in fluorescence in a frog sartorius muscle following a twitch. Nature 184:195–196

    Article  CAS  Google Scholar 

  • Chance B, Pappenheimer AM (1954) Kinetic and spectrophotometric studies of cytochrome b5 in midgut homogenates of Cecropia. J Biol Chem 209:931­-943

    PubMed  Google Scholar 

  • Chance B, Williams CM (1956) The respiratory chain and oxidative phosphoryla­tion. Adv Enzymol 17:65–134

    CAS  Google Scholar 

  • Chance B, Cohen P, Jöbsis FF, Schoener B (1962) Localized fluorometry of oxidation-reduction states of intracellular pyridine nucleotide in brain and kidney cortex of the anesthetized rat. Science 136:325

    Article  PubMed  CAS  Google Scholar 

  • Chapman JP (1972) Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit. J Gen Physiol 59:135–154

    Article  PubMed  CAS  Google Scholar 

  • Cohen JJ, Kamm DE (1976) Renal metabolism: Relation to renal function. In: Brenner BM, Rector FC (eds) The kidney, pp 126–200. Saunders, Phila­delphia

    Google Scholar 

  • Ganser AL, Forte JG (1973) K+-Stimulated ATPase in purified microsomes of bullfrog oxynitic cells. Biochim Biophys Acta 307:169–180

    Article  PubMed  CAS  Google Scholar 

  • Hansford RG (1980) Control of mitochondrial substrate oxidation. Curr Top Bioenerg 10:217–278

    CAS  Google Scholar 

  • Harris SI, Balaban RS, Mandel LJ (1980) Oxygen consumption and cellular ion transport. Evidence that the ATP/02 ratio is near 6 in the intact cell. Science 208:1148–1150

    Article  PubMed  CAS  Google Scholar 

  • Harris SI, Balaban RS, Barrett L, Mandel LJ (1981) Mitochondrial respiratory capacity and Na+ and K+-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell. J Biol Chem 256:10319–10328

    PubMed  CAS  Google Scholar 

  • Harvey WR, Zerahn K (1972) Active transport of potassium and other alkali metals by the isolated midgut of the silkworm. Curr Top Membr Transp 3: 367–410

    Article  CAS  Google Scholar 

  • Harvey WR, Haskell JA, Zerahn K (1967) Active transport of potassium and oxygen consumption in the isolated midgut of Hyalophora cecropia. J Exp Biol 46:235–248

    PubMed  CAS  Google Scholar 

  • Hersey SJ (1974) Interactions between oxidative metabolism and acid secretion in gastric mucosa. Biochim Biophys Acta 344:157–203

    PubMed  CAS  Google Scholar 

  • Hersey SJ, High WL (1972) Effect of unstirred layers on oxygenation of frog gastric mucosa. Am J Physiol 223:903–909

    PubMed  CAS  Google Scholar 

  • Hersey SJ, Jöbsis FF (1969) Redox changes in the respiratory chain related to acid secretion by the intact gastric mucosa. Biochem Biophys Res Commun 36:243–250

    Article  PubMed  CAS  Google Scholar 

  • Ito S (1967) Anatomic structure of the gastric mucosa. In: Handbook of physio­logy, Sect 6, Vol II, pp. 705–741. American Physiological Society, Washing­ton, DC

    Google Scholar 

  • Jöbsis FF (1972) Oxidative metabolism at low PO2. Fed Proc 31:1404–1413 Jöbsis FF, Duffield JC (1967) Oxidative and glycolytic recovery metabolism in muscle. J Gen Physiol 50:1009–1047

    Article  Google Scholar 

  • Jöbsis FF, Keizer HJ, LaManna JC, Rosenthal M (1977) Reflectance spectrophotometry of cytochrome aa3 in vivo. J App Physiol 43:858–872

    Google Scholar 

  • Jöbsis FF, Stainsby WN (1968) Oxidative of NADH during contractions of circulated mammalian skeletal muscle. Respir Physiol 4:292–300

    Article  PubMed  Google Scholar 

  • Joyner RW, Moore JW (1973) Computer Controlled Voltage Clamp Experi­ments. Ann Biomed Eng 1:368–380

    Article  PubMed  CAS  Google Scholar 

  • Jungreis AM, Vaughan GL (1977) Insensitivity of lepidopteran tissues to ouabain: absence of ouabain binding and Na+/K+-ATPase in larval and adult midgut. J Insect Physiol 23:503–509

    Article  CAS  Google Scholar 

  • Kidder III GW (1970) Unstirred layers in tissue respiration: Application to studies of frog gastric mucosa. Am J Physiol 219:1789–1795

    PubMed  CAS  Google Scholar 

  • Kinne R (1979) Metabolic correlates of tubular transport. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology. Springer-Verlag, Berlin, 4B:529–562.

    Google Scholar 

  • Malinowska DH, Koelz HR, Hersey SJ, Sachs G (1981) Properties of the gastric proton pump in unstimulated permeable gastric glands. Proc Natl Acad Sci USA 78:5908–5912

    Article  PubMed  CAS  Google Scholar 

  • Mandel LJ, Balaban RS (1981) Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am J Physiol 240:F357–F371

    PubMed  CAS  Google Scholar 

  • Mandel LJ, Riddle TG (1979) Kinetic relationship between energy production and consumption in frog gastric mucosa. Am J Physiol 236:E301–E308

    PubMed  CAS  Google Scholar 

  • Mandel LJ, Moffett DF, Jöbsis FF (1975) Redox state of respiratory chain en­zymes and potassium transport in silkworm midgut. Biochim Biophys Acta 408:123–134

    Article  PubMed  CAS  Google Scholar 

  • Mandel LJ, Riddle TG, LaManna JC (1976) A rapid scanning spectrophotome­ter and fluorometer for in vivo monitoring of steady-state and kinetic opti­cal properties of respiratory enzymes. In: Jöbsis FF (ed) Oxygen and physiological function, pp 79–89. Professional Information Library, Dallas

    Google Scholar 

  • Mandel LJ, Moffett DF, Riddle TG, Grafton MM (1980a) Coupling between oxidative metabolism and active transport in the midgut of the tobacco hornworm. Am J Physiol 238:C1–C9

    CAS  Google Scholar 

  • Mandel LJ, Riddle TG, Storey JM (1980b) Role of ATP in respiratory control and active transport in tobacco hornworm midgut. Am J Physiol 238:C10–C14

    CAS  Google Scholar 

  • Moffett DW (1979) Bathing solution tonicity and potassium transport by the midgut of the tobacco hornworm Manduca sexta. J Exp Biol 78:213–223

    CAS  Google Scholar 

  • O’Connor MJ (1976) Origin of labile NADH tissue fluorescence. In: Jöbsis FF (ed) Oxygen and physiological function, pp 90–99. Professional Information Library, Dallas

    Google Scholar 

  • Oshino N, Sugano T, Oshino R, Chance B (1974) Mitochondrial function under hypoxic conditions: The steady states of cytochrome a + a3 and their rela­tion to mitochondrial energy states. Biochim Biophys Acta 368:298–310

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal M, Jöbsis FF (1971) Intracellular redox changes in functioning cere­bral cortex. II. Effects of direct cortical stimulation. J Neurophysiol 34: 750–762

    PubMed  CAS  Google Scholar 

  • Schmidt U, Guder WG (1976) Sites of enzyme activity along the nephron. Kid­ney Int 9:233–242

    Article  CAS  Google Scholar 

  • Shappirio DG, Williams CM (1957) The cytochrome system of the Cecropia silk­worm II. Spectrophotometric studies of oxidative enzyme systems in the wing epithelium. Proc R Soc Lond (Biol) 147:233–246

    Article  CAS  Google Scholar 

  • van Rossum GDV (1968) Relation of the oxidoreduction level of electron car­riers to ion transport in slices of avian salt gland. Biochim Biophys Acta 153:124–131

    Article  PubMed  Google Scholar 

  • Wolfersberger MG, Harvey WR, Cioffi M (1982) Transepithelial potassium trans­port in insect midgut by an electrogenic alkali metal ion pump. Curr Top Membr Transp 16:109–133

    Article  CAS  Google Scholar 

  • Yang CC (1954) A rapid and sensitive recording spectrophotometer for the visible and ultraviolet region. I. Description and performance. Rev. Sci Instrum 25:801–807

    Article  CAS  Google Scholar 

  • Yang CC, Legallais V (1954) A rapid and sensitive recording spectrophotometer for the visible and ultraviolet region. II. Electronic circuits. Rev Sci Instrum 25:807–813

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Mandel, L.J. (1984). Spectrophotometry and Fluorometry in Ion Transport Epithelia. In: Bradley, T.J., Miller, T.A. (eds) Measurement of Ion Transport and Metabolic Rate in Insects. Springer Series in Experimental Entomology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8239-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8239-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8241-6

  • Online ISBN: 978-1-4613-8239-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics