Skip to main content

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

Atmospheric absorption is one of the most unusual and intriguing examples of water transport in animals, involving mechanisms that move water against spectacular thermodynamic gradients (Machin 1979b). Physiological study of the phenomenon has required the development of a wholly different experimental technology from that normally found in the transport physiologist’s laboratory. The experimenter must explore water movements in both gas and liquid phases, find ways of measuring biological fluids of exceedingly high solute concentration and correspondingly reduced solvent activities, and frequently overcome the difficulties of working with very small animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arlian LG (1975) Dehydration and survival of the European house dust mite, Dermatophagoides pteronyssinus. J Med Entomol 12: 437–442

    PubMed  CAS  Google Scholar 

  • Arlian LG, Wharton GW (1974) Kinetics of active and passive components of water exchange between the air and a mite, Dermatophagoides farinae. J Insect Physiol 20: 1063–1077

    Article  PubMed  CAS  Google Scholar 

  • Beament JWL, Noble-Nesbitt J, Watson JAL (1964) The water-proofing mechanism of arthropods. III. Cuticular permeability in the firebrat, Thermobia domestica (Packard). J Exp Biol 41: 323–330

    Google Scholar 

  • Campbell EC, Campbell GS, Barlow WK (1973) A dewpoint hygrometer for water potential measurement. Agric Meterol 12: 113–121

    Article  Google Scholar 

  • Dessens H (1946) La brume et brouillard étudies à l’aide des fils d’araignées. Ann Geophys 2: 276–278

    Google Scholar 

  • Devine, TL, Wharton GW (1973) Kinetics of water exchange between a mite, Laelaps echidnina, and the surrounding air. J Insect Physiol 19: 243–254

    Article  PubMed  CAS  Google Scholar 

  • Dunbar BS, Winston PW (1975) The site of active uptake of atmospheric water in larvae of Tenebrio molitor. J Insect Physiol 21: 495–500

    Article  Google Scholar 

  • Edney EB (1971) Some aspects of water balance in Tenebrionid beetles and a thysanuran from the Namid Desert of Southern Africa. Physiol Zool 44: 61–76

    Google Scholar 

  • Edney EB (1977) Water balance in land arthropods. Springer, New York

    Google Scholar 

  • Gilby AR (1980) Transpiration, temperature and lipids in insect cuticle. Adv Insect Physiol 15: 1–33

    Article  CAS  Google Scholar 

  • Hew CL, Slaughter D, Fletcher GL, Shashikant BJ (1981) Antifreeze glycoproteins in the plasma of Newfoundland Atlantic cod (Gadus morhua). Can J Zool 59: 2186–2192

    Article  CAS  Google Scholar 

  • Johansson B (1920) Der Gaswechsel bei Tenebrio molitor in seiner Abhängigkeit von der Nahrung. Acta Univ Lund 16:1–36

    Google Scholar 

  • Knülle W, Devine TL (1972) Evidence for active and passive components of sorption of atmospheric water vapor by larvae of the tick Dermacentor variabilis. J Insect Physiol 18: 1653–1664

    Article  PubMed  Google Scholar 

  • Knülle W, Spadafora RR (1970) Occurrence of water vapor sorption from the atmosphere in larvae of some stored product beetles. J Econ Entomol 4: 1069–1070

    Google Scholar 

  • Krogh A, Weis-Fogh T (1951) The respiratory exchange of the desert locust (Schistocerca gregaria) before, during and after flight. J Exp Biol 28: 344–358

    CAS  Google Scholar 

  • Köppers J, Thurm U (1980) Water transport by electroosmosis. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York

    Google Scholar 

  • List RJ (1958) Smithsonian Meterological Tables, 6th rev. ed. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Leighly J (1937) A note on evaporation. Ecology 18: 180–198

    Article  Google Scholar 

  • Loveridge JP (1980) Cuticle water relations techniques. In: Miller TA (ed) Cuticle techniques in arthropods. Springer, New York

    Google Scholar 

  • Ludwig D, Anderson JM (1942) The effects of different humidities at various temperatures on the development of four moths. Ecology 23: 259–274

    Article  Google Scholar 

  • Machin J (1975) Water balance in Tenebrio molitor, L. larvae; The effect of atmospheric water absorption. J Comp Physiol 101: 121–132

    Google Scholar 

  • Machin J (1976) Passive exchanges during water vapor absorption in mealworms (Tenebrio molitor): A new approach to studying the phenomenon. J Exp Biol 65: 603–615

    PubMed  CAS  Google Scholar 

  • Machin J (1978) Water vapor uptake by Tenebrio: A new approach to studying the phenomenon. In: Bolis L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology: Water, ions and fluid mechanics. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Machin J (1979a) Compartmental osmotic pressures in the rectal complex of Tenebrio larvae: Evidence for a single tubular pumping site. J Exp Biol 82: 123–137

    Google Scholar 

  • Machin J (1979b) Atmospheric water absorption in arthropods. Adv Insect Physiol 14: 1–48

    Article  Google Scholar 

  • Machin J (1982) Water vapor absorption in insects. Am J Physiol 244 (Regulatory Integrative Comp Physiol 13): R187 - R192.

    Google Scholar 

  • Machin J, O’Donnell MJ, Coutchie PA (1982) Mechanisms of water vapor absorption in insects. J Exp Zool 222: 309–320.

    Article  Google Scholar 

  • Mason EA, Monchick L (1965) Survey of the equation of state and transport properties of moist gases. In: Wexler A (ed) Humidity and moisture, Vol. 3. Reinhold, New York

    Google Scholar 

  • Noble-Nesbitt J (1969) Water balance in the firebrat, Thermobia domestica (Packard). Exchanges of water with the atmosphere. J Exp Biol 50: 745–769

    PubMed  CAS  Google Scholar 

  • Noble-Nesbitt J (1970a) Water uptake from subsaturated atmospheres: Its site in insects. Nature 225: 753–754

    Article  PubMed  CAS  Google Scholar 

  • Noble-Nesbitt J (1970b) Water balance in the firebrat, Thermobia domestica (Packard). The site of uptake of water from the atmosphere. J Exp Biol 52: 193–200

    Google Scholar 

  • Noble-Nesbitt J (1975) Reversible arrest of uptake of water from subsaturated atmospheres by the firebrat, Thermobia domestica (Packard). J Exp Biol 62: 657–669

    Google Scholar 

  • Noble-Nesbitt J (1978) Absorption of water vapor by Thermobia domestica and other insects. In: Bolis L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology: Water, ions and fluid mechanics. Cambridge University Press, Cambridge, England

    Google Scholar 

  • O’Donnell MJ (1977) Site of water vapor absorption in the desert cockroach, Arenivaga investigata. Proc Natl Acad Sci USA 74: 1757–1760

    Article  PubMed  Google Scholar 

  • O’Donnell MJ (1980) Water vapor absorption by the desert burrowing cockroach Arenivaga investigata (Dictyoptera: Polyphagidae). Doctoral dissertation, University of Toronto

    Google Scholar 

  • O’Donnell MJ (198la) Frontal bodies: Novel structures involved in water vapor absorption in the desert burrowing cockroach, Arenivaga investigata. Tissue Cell 13:541–555

    Article  PubMed  Google Scholar 

  • O’Donnell MJ (1981b) Fluid movements during water vapor absorption by the desert burrowing cockroach, Arenivaga investigata. J Insect Physiol 27: 877–887

    Article  Google Scholar 

  • O’Donnell MJ (1981c) Water vapor absorption by the desert burrowing cockroach, Arenivaga investigata: Evidence against a solute-dependent mechanism. J Exp Biol 96: 251–262

    Google Scholar 

  • O’Donnell MJ (1982) Hydrophilic cuticle-the basis for water vapour absorption by the desert burrowing cockroach, Arenivara investigata. J Exp Biol 99: 43–60

    Google Scholar 

  • Okasha AYK (1971) Water relations in an insect, Thermobia domestica. II. Relationships between water content, water uptake from subsaturated atmospheres and water loss. J Exp Biol 57: 285–296

    Google Scholar 

  • Ramsay JA (1964) The rectal complex of the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). Philos Trans Soc Land (Biol) 248: 279–314

    Article  Google Scholar 

  • Richards JM (1971) Simple expression for the saturation vapour pressure of water in the range —50° to 140°. Brit J Appl Phys 4: L15 - L18

    CAS  Google Scholar 

  • Rudolph D (1982a) Occurrence, properties and biological implications of the active uptake of water vapour from the atmosphere in Psocoptera. J Insect Physiol 28: 111–121

    Article  Google Scholar 

  • Rudolph D (1982b) Site, process and mechanism of active uptake of water vapour from the atmosphere in the Psocoptera. J Insect Physiol 28: 205–212

    Article  Google Scholar 

  • Rudolph D, Knülle W (1974) Site and mechanism of water vapor uptake from the atmosphere in ixodid ticks. Nature 249: 84–85

    Article  PubMed  CAS  Google Scholar 

  • Rudolph D, Knülle W (1978) Uptake of water vapor from the air: Process, site and mechanism in ticks. In: Bolls L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology: Water, ions and fluid mechanics. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Rudolph D, Knülle W (1982) Novel uptake systems for atmospheric water vapor among insects. J Exp Zool 222: 321–333

    Article  Google Scholar 

  • Schwertz PA, Brow JE (1951) Diffusivity of water vapor in some common gases. J Chem Phys 19: 640–646

    Article  CAS  Google Scholar 

  • Solomon AK (1960) Compartmental methods of kinetic analysis. In: Comar CL, Bronner F (eds) Mineral metabolism. Academic Press, London

    Google Scholar 

  • Solomon ME (1951) The control of humidity with KOH, H2SO4, and other solutions. Bull Entomol Res 42: 543–559

    Article  CAS  Google Scholar 

  • Weatherley PE (1960) A new micro-osmometer. J Exp Bot 2: 258–268

    Article  Google Scholar 

  • Wharton GW, Arlian LG (1972) Utilisation of water by terrestrial mites and insects. In: Rodriguez JG (ed) Insect and mite nutrition. North-Holland, Amsterdam

    Google Scholar 

  • Wharton GW, Devine TL (1968) Exchange of water between a mite, Laelaps echidnina, and the surrounding air under equilibrium conditions. J Insect Physiol 14: 1303–1318

    Article  PubMed  CAS  Google Scholar 

  • Winston PW, Bates DH (1960) Saturated solutions for the control of humidity in biological research. Ecology 41: 232–237

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Machin, J. (1984). The Study of Atmospheric Water Absorption. In: Bradley, T.J., Miller, T.A. (eds) Measurement of Ion Transport and Metabolic Rate in Insects. Springer Series in Experimental Entomology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8239-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8239-3_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8241-6

  • Online ISBN: 978-1-4613-8239-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics