The Computer: Ruin of Science and Threat to Mankind (1980/1982)

  • C. Truesdell


This essay is designed to be read by an intelligent layman: one who is expert neither in computing nor in mathematics but is competent in some other science such as chemistry or one of the biologies.


Catastrophe Theory Competent Mathematician Great Mathematician Inaugural Lecture Computer Expert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Capriz & N. Onesto, “L’elaborazione elettronica nelle scienze esatte”, pages 83–94 of Atti della LIII Riunione della SIPS, Pisa, 1975.Google Scholar
  2. 2.
    P. T. Boggs, “Mathematical software: How to sell mathematics”, pages 221–229 of Mathematics Tomorrow,edited by L. A. STEEN, New York etc.,Springer-Verlag, 1981. See pages 224–226 and 228.Google Scholar
  3. 3.
    H. R. Post, Against Ideologies (Inaugural lecture), Chelsea College, London, 1974.Google Scholar
  4. 7.
    R. M. Ziff, S. D. Merajver, & G. Stell, “Approach to equilibrium of a Boltzmann-Equation solution”, Physical Review Letters 47 (1981): 1493–1496.MathSciNetCrossRefGoogle Scholar
  5. 8.
    E. H. Lieb, “Comment upon `Approach to equilibrium of a Boltzmann-Equation solution”’, Physical Review Letters 48 (1982): 1057.Google Scholar
  6. 15.
    E. Fermi, J. Pasta, & S. Ulam, Studies of non-linear problems, Document LA-1940, May 1955 = pages 978–988 of Volume 2 of E. FERMI, Collected Papers, Chicago & Rome, University of Chicago Press & Accademia Nazionale dei Lincei, 1965.Google Scholar
  7. 16.
    Cf. C. Truesdell, §1 30 and 55 of The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788, Leonhard Euleri Opera omnia (II) 112,1960; page CXXI of “Editor’s Introduction”, LEONHARD! EULERI Opera omnia (II) 12, 1954; and pages LIX—LX and XCVII—IC of “Editor’s Introduction”, Leonhard! Euleri Opera omnia (II) 13, 1956.Google Scholar
  8. 17.
    N. J. Zabusky, “Exact solution for the vibrations of a nonlinear continuous model string”, Journal of Mathematical Physics 3 (1962): 1028–1039.MathSciNetMATHCrossRefGoogle Scholar
  9. 18.
    M. D. Kruskal, “Asymptotology in numerical calculations: progress and plans on the Fermi-Pasta-Ulam problem”, pages 43–62 of Proceedings of the IBM Scientific Computing Symposium on Large-Scale Problems in Physics (1963), White Plains (N.Y.), IBM Data Processing Division, 1965.Google Scholar
  10. 19.
    M. D. Kruskal, “The Korteweg-de Vries equation and related evolution equations”, pages 61–83 of Lectures in Applied Mathematics, Volume 15, American Mathematical Society, 1974.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • C. Truesdell
    • 1
  1. 1.The Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations