Structure and Function in Teleost Auditory Systems

  • Richard R. Fay
  • Arthur N. Popper
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

In this chapter much of the recent literature on hearing in fishes has been brought together. First, the gross morphological and ultrastructural bases of sensitivity to the pressure and the motional components of underwater sound will be considered. This will be followed by a discussion of the behavioral and physiological literature on signal processing, particularly as it relates to the structure and function of the inner ear. The goal is to contribute to a greater understanding of the organizing principles of auditory processing by fishes, and by vertebrates in general, through emphasis on comparative issues and data. However, the central auditory system or the mechanism of localization, including the possible relationships between labyrinthine and lateral line function will not be considered since they are considered in other chapters (see Schuijf andBuwalda, Chapter 2; Bullock, Chapter 16; and Northcutt, Chapter 3).

Keywords

Fatigue fIltering Neurol Sine Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E. D., Craik, K. J. W., Sturdy, R. S.: The electrical response of the auditory mechanism in cold-blooded vertebrates. Proc. Roy. Soc. Sec. B. 125, 435–455 (1938).CrossRefGoogle Scholar
  2. Alexander, R. Mcn.: The structure of the Weberian apparatus in the Cyprini. Proc. Zool. Soc. Lond. 139, 451–473 (1962).Google Scholar
  3. Blaxter, J. H. S., Tytler, P.: Physiology and function of the swimbladder. In: Advances in Comparative Physiology and Biochemistry, Vol. 7. New York: Academic Press, 1978, pp. 311–367.Google Scholar
  4. Buerkle, U.: Relation of pure tone thresholds to background noise level in the Atlantic cod (Gadus morhua). J. Fish. Res. Bd. Canada. 25, 1155–1160 (1968).CrossRefGoogle Scholar
  5. Buerkle, U.: Auditory masking and the critical band in Atlantic cod (Gadus morhua). J. Fish. Res. Bd. Canada, 26, 1113–1119 (1969).CrossRefGoogle Scholar
  6. Cahn, P. H. (ed.).: Lateral Line Detectors. Bloomington, Indiana: University Press (1967).Google Scholar
  7. Cahn, P. H., Siler, W., Wodinsky, J.: Acoustico-lateralis system of fishes: tests of pressure and particle-velocity sensitivity in grunts, Haemulon sciurus and Haemulon parrai. J. Acoust. Soc. Amer. 46, 1572–1578 (1969).CrossRefGoogle Scholar
  8. Carlstrom, D.: A crystallographic study of vertebrate otoliths. Biol. Lull. 124, 441–463(1963).Google Scholar
  9. Chapman, C. J.: Field studies of hearing in teleost fish. Helgolander wiss. Meeresunters. 24,371–390(1973).CrossRefGoogle Scholar
  10. Chapman, C. J., Hawkins, A. D.: A field study of hearing in the cod, Gadus morhua L. J. Comp. Physiol. 85, 147–167 (1973).CrossRefGoogle Scholar
  11. Chapman, C. J., Johnstone, A. D. F.: Some auditory discrimination experiments on marine fish. J. Exp. Biol. 61, 521–528 (1974).PubMedGoogle Scholar
  12. Chapman, C. J., Sand, O.: Field studies of hearing in two species of flatfish Pleuro- nectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae). Comp. Biochem. Physiol. 47A, 371–385 (1974).CrossRefGoogle Scholar
  13. Chranilov, N. S.: Beiträge zur Kenntnis des Weberschen Apparates der Ostariophysi. 1. Vergleichend-anatomische Ubersicht über die Knochenelemente des Weberschen Apparates bei Cypriniformes. Zool. Jb. (Anat. Ont.). 49, 501–597 (1927).Google Scholar
  14. Clarke, N. L., Popper, A. N., Mann, Jr., J. A.: Laser light-scattering investigation of the teleost swimbladder response to acoustic stimuli. Biophysical J. 15, 307–318(1975).CrossRefGoogle Scholar
  15. Coombs, S., Popper, A. N.: Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J. Comp. Physiol. 132, 203–207 (1979).CrossRefGoogle Scholar
  16. Corwin, J. T.: Morphology of the macula neglecta in sharks of the genus Carcharhinus. J. Morph. 152, 341–361 (1977).PubMedCrossRefGoogle Scholar
  17. Dale, T.: The labyrinthine mechanoreceptor organs of the cod Gadus morhua L. (Teleostei: Gadidae). Norw. J. Zool. 24, 85–128 (1976).Google Scholar
  18. Demski, L. S., Gerald, J. W., Popper, A. N.: Central and peripheral mechanisms of teleost sound production. Amer. Zool. 13, 1141–1167 (1973).Google Scholar
  19. Denton, E. J., Blaxter, J. H. S.: The mechanical relationships between the clupeid swimbladder, inner ear and lateral line. J. Mar. Biol. Assoc. U. K. 56, 787–807 (1976).CrossRefGoogle Scholar
  20. Dijkgraaf, S.: Uber die Auslösung des Gasspuckreflexes bei Fischen. Experientia. 6, 188–190(1950).PubMedCrossRefGoogle Scholar
  21. Dijkgraaf, S.: Uber die Schallwahrnehmung bei Meeresfischen. Z. vergl. Physiol. 34, 104–122(1952).Google Scholar
  22. Dijkgraaf, S.: Hearing in bony fishes. Proc. Roy. Soc. Lond. Ser. B. 152, 51–54 (1960).CrossRefGoogle Scholar
  23. Dijkgraaf, S., Verheijen, F.: Neue Versuche uber das Tonunterscheidungsvermogen der lritze. Z. vergl. Physiol. 32, 248–256 (1950).CrossRefGoogle Scholar
  24. Dudock Van Heel, W. H.: Pitch discrimination in the minnow (Phoxinus laevis) at different temperature levels. Experientia. 12, 75–76 (1956).CrossRefGoogle Scholar
  25. Enger, P. S.: Single unit activity in the peripheral auditory system of a teleost fish. Acta. Physiol. Scand. 59, Suppl. 3, 9–48 (1963).Google Scholar
  26. Enger, P. S.: Acoustic thresholds in goldfish and its relation to the sound source distance. Comp. Biochem. Physiol. 18, 859–868 (1966).PubMedCrossRefGoogle Scholar
  27. Enger, P. S.: Masking of auditory responses in the medulla oblongata of goldfish. J. Exp. Biol. 59, 415–424 (1973).PubMedGoogle Scholar
  28. Enger, P. S.: On the orientation of haircells in the labyrinth of perch (Perca fluvi- atilis). In: Sound Reception in Fish. Schuijf, A., Hawkins, A. D. (eds.). Amsterdam: Elsevier, 1976, pp. 49–62.Google Scholar
  29. Enger, P. S., Hawkins, A. D., Sand, O., Chapman, C. J.: Directional sensitivity of saccular microphonic potentials in the haddock. J. Exp. Biol. 59,425–433 (1973).PubMedGoogle Scholar
  30. Fay, R. R.: Behavioral audiogram for the goldfish. J. Aud. Res. 9, 112–121 (1969).Google Scholar
  31. Fay, R. R.: Auditory frequency discrimination in the goldfish (Carassius auratus). J. Comp. Physiol. Psychol. 73, 175–180 (1970).CrossRefGoogle Scholar
  32. Fay, R. R.: Perception of amplitude-modulated signals in the goldfish. J. Acoust. Soc. Amer. 52, 660–666 (1972).CrossRefGoogle Scholar
  33. Fay, R. R.: Auditory frequency discrimination in vertebrates. J. Acoust. Soc. Amer. 56, 206–209(1973).CrossRefGoogle Scholar
  34. Fay, R. R: Masking of tones by noise for the goldfish (Carassius auratus). J. Comp. Physiol. Psychol. 87, 708–716 (1974a).PubMedCrossRefGoogle Scholar
  35. Fay, R. R.: Sound reception and processing in the carp: Saccular potentials. Comp. Biochem. Physiol. 46(A), 29–42 (1974b).CrossRefGoogle Scholar
  36. Fay, R. R.: Auditory temporal modulation transfer function for the goldfish. J. Acoust. Soc. Amer. 62(Suppl. 1), 588 (1977).Google Scholar
  37. Fay, R. R.: Sound detection and sensory coding by the auditory systems of fishes. In The Behavior of Fish and Other Aquatic Animals. Mostofsky, D. (ed.). New York: Academic Press, 1978a, pp. 197–236.Google Scholar
  38. Fay, R. R.: Phase-locking in goldfish saccular nerve fibers accounts for frequency discrimination capacities. Nature. 275, 320–322 (1978b).PubMedCrossRefGoogle Scholar
  39. Fay, R. R.: The coding of information in single auditory nerve fibers of the goldfish. J. Acoust. Soc. Amer. 63, 136–146 (1978c).CrossRefGoogle Scholar
  40. Fay, R. R.: Psychophysics and neurophysiology of temporal factors in hearing by the goldfish: amplitude modulation detection. J. Neurophysiol. (in press).Google Scholar
  41. Fay, R. R., Ahroon, W. A., Orawski, A. A.: Auditory masking patterns in the goldfish (Carassius auratus): Psychophysical tuning curves. J. Exp. Biol. 74, 83–100 (1978).PubMedGoogle Scholar
  42. Fay, R. R., Patricoski, M. M.: Sensory mechanisms for low frequency vibration detection in fishes. U. S. Geological Survey open file report on Abnormal Animal Behavior Prior to Earthquakes. Buskirk, R. (ed.). (1979).Google Scholar
  43. Fay, R. R., Olsho, L.: Discharge patterns of lagenar and saccular neurons of the goldfish eighth nerve: Displacement sensitivity and directional characteristics. Comp. Biochem. Physiol. 62A, 377–386 (1979).CrossRefGoogle Scholar
  44. Fay, R. R., Popper, A. N.: Acoustic stimulation of the ear of the goldfish (Carassius auratus). J. Exp. Biol. 61, 243–260 (1974).PubMedGoogle Scholar
  45. Fay, R. R., Popper, A. N.: Modes of stimulation of the teleost ear. J. Exp. Biol. 62, 379–388 (1975).PubMedGoogle Scholar
  46. Fine, M., Winn, H., Olla, B.: Communication in Fishes. In How Animals Communicate. Sebeok, T. A. (ed.). Bloomington, Indiana: Indiana University Press, 1978, pp. 472–518.Google Scholar
  47. Fish, J. F., Offutt, G. C.: Hearing thresholds from toadfish, Opsanus tau, measured in the laboratory and field. J. Acoust. Soc. Amer. 51, 1318–1321 (1972).CrossRefGoogle Scholar
  48. Flock, A.: Structure of the macula utriculi with special reference to directional interplay of sensory responses as revealed by morphological polarization. J. Cell Biol. 22,413–431 (1964).PubMedCrossRefGoogle Scholar
  49. Flock, A.: Sensory transduction in hair cells. In: Handbook of Sensory Physiology, Vol. II. Lowenstein, W. R. (ed.). Berlin: Springer-Verlag, 1971, pp. 396–441.Google Scholar
  50. Flock, A.: Physiological properties of sensory hairs in the ear. In: Psychophysics and Physiology of Hearing. Evans, E. F., Wilson, J. P. (eds.). London: Academic Press, 1977, pp. 15–25.Google Scholar
  51. Furukawa, T., Ishii, Y.: Neurological studies on hearing in goldfish. J. Neurophysiol. 30, 1377–1403 (1967).PubMedGoogle Scholar
  52. Gourevitch, G.: Detectability of tones in quiet and in noise by rats and monkeys. In: Animal Psychophysics: The Design and Conduct of Sensory Experiments. Stebbins, W. C. (ed.). New York: Appleton-Century-Crofts, 1970, pp. 67–97.Google Scholar
  53. Green, D. M.: Minimum integration time. In: Basic Mechanisms in Hearing. Miller, A. (ed.). New York: Academic Press, 1973, pp. 829–846.Google Scholar
  54. Green, D. M., Yost, W. A.: Binaural analysis. In: Handbook of Sensory Physiology, Vol. V, Part 2. Keidel, W., Neff, W. (eds.). New York: Springer-Verlag, 1975, pp. 461–480.Google Scholar
  55. Grozinger, B.: Elektro-physiologische Untersuchungen an der Hörbahn der Schleie (Tinea tinea L.). Z. vergl. Physiol. 57, 44–76 (1967).CrossRefGoogle Scholar
  56. Hama, K.: A study on the fine structure of the saccular macula of the goldfish. Z. Zellforsch. 94, 155–171 (1969).PubMedCrossRefGoogle Scholar
  57. Hawkins, A. D., Chapman, C. J.: Masked auditory thresholds in the cod Gadus mor- hua L. J. Comp. Physiol. 103A, 209–226 (1975).CrossRefGoogle Scholar
  58. Hawkins, A. D., MacLennan: An acoustic tank for hearing studies on fish. In: Sound Reception in Fish. Schuijf, A., Hawkins, A. D. (eds.). Amsterdam: Elsevier, 1976, pp. 149–169.Google Scholar
  59. Hawkins, A. D., Sand, O.: Directional hearing in the median vertical plane by the cod. J. Comp. Physiol. 122, 1–8 (1977).CrossRefGoogle Scholar
  60. Heiligenberg, W.: Principles of Electrolocation and Jamming Avoidance in Electric Fish. In: Studies of Brain Function, Vol. 1. Braitenberg, V. (ed.). Berlin: Springer- Verlag (1977).Google Scholar
  61. Henson, O. W.: Comparative anatomy of the middle ear. In: Handbook of Sensory Physiology, Vol. V, Part 1. Keidel, W., Neff, W. (eds.). New York: Springer- Verlag, 1974, pp. 38–110.Google Scholar
  62. Hopkins, C. C.: Stimulus filtering and electroreception: Tuberous electroreceptors in three species of gymnotid fish. J. Comp. Physiol. III, 171–206 (1976).CrossRefGoogle Scholar
  63. Iversen, R. T. B.: Response of the yellowfin tuna (Thunnus albacares) to underwater sound. In: Marine Bio-Acoustics II. Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1967, pp. 105–121.Google Scholar
  64. Iversen, R. T. B.: Auditory thresholds of the scombrid fish Euthynnus affinis, with comments on the use of sound in tuna fishing. FAO Conference on Fish Behaviour in Relation to Fishing Techniques and Tactics. FAO Fisheries Rep. No. 62 (3), 849–859(1969).Google Scholar
  65. Jacobs, D. W., Tavolga, W. N.: Acoustic intensity limens in the goldfish. Anim. Behav. 15,324–335 (1967).PubMedCrossRefGoogle Scholar
  66. Jacobs, D. W., Tavolga, W. N.: Acoustic frequency discrimination in the goldfish. Anim. Behav. 16, 67–71 (1968).PubMedCrossRefGoogle Scholar
  67. Jenkins, D. B.: A light microscopic study of the saccule andlagena in certain catfishes. Amer. J. Nat. 150, 605–630 (1977).Google Scholar
  68. Jenkins, D. B.: A transmission and scanning electron microscopic study of the saccule in five species of catfishes. The Amer. J. of Anat. 154, 81–101 (1979).CrossRefGoogle Scholar
  69. Jorgensen, J. M.: Hair cell polarization in the flatfish inner ear. Acta Zool. 57, 37–39 (1976).CrossRefGoogle Scholar
  70. Knudsen, E. I.: Distinct auditory and lateral-line nuclei in the midbrain of catfishes. J. Comp. Neurol. 173, 417–432 (1977).PubMedCrossRefGoogle Scholar
  71. Labs, S. M., Gescheider, G. A., Fay, R. R., Lyons, C. H.: Psychophysical tuning curves in vibrotaction. Sensory Processes 2, 231–247 (1979).Google Scholar
  72. Lewis, E. R., Li, C. W.: Hair cell types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res. 83, 35–50 (1975).CrossRefGoogle Scholar
  73. Lindeman, H. H.: Regional differences in structure of the vestibular sensory regions. J. Laryngol. Otol. 81,1–17 (1969).Google Scholar
  74. Lowenstein, O.: The labyrinth. In: Fish Physiology, Vol. 5. Hoar, W. W., Randall, D. J. (eds.). New York: Academic Press, 1971, pp. 207–240.Google Scholar
  75. Lowenstein, O., Osborne, M. P., Wersäll, J.: Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray(Raja clavata). Proc. Roy. Soc. Lond.B. 160, 1–12(1964).CrossRefGoogle Scholar
  76. Maler, L., Karten, H. J., Bennett, M. V. L.: The central connections of the posterior lateral line nerve of Gnathonemus petersii. J. Comp. Neur. 151, 57–66 (1973a).PubMedCrossRefGoogle Scholar
  77. Maler, L., Karten, H. J., Bennett, M. V. L.: The central connections of the anterior lateral line nerve of Gnathonemus petersii. J. Comp. Neur. 151, 67–84 (1973b).PubMedCrossRefGoogle Scholar
  78. McCormick, C.: Central projections of the lateralis and eighth nerves in the bowfin, Amia calva. Ph.D. Thesis, Univ. of Michigan (1978).Google Scholar
  79. McGee, T., Ryan, A., Dallos, P.: Psychophysical tuning curves of chinchillas. J. Acoust. Soc. Amer. 60, 1146–1150 (1976).CrossRefGoogle Scholar
  80. Miller, A.: Coding of amplitude modulated sounds in the cochlear nucleus of the rat. In: Basic Mechanisms in Hearing. Miller, A. (ed.). New York: Academic Press, 1973, pp. 593–619.Google Scholar
  81. Moulton, J. M., Dixon, R. H.: Directional hearing in fishes. In: Marine Bio-Acoustics, Vol. II. Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1967, pp. 182–232.Google Scholar
  82. Nelson, E. M.: The morphology of the swimbladders and auditory bulla in Holocen- tridae. Fieldiana Zool. 37, 121–137 (1955).Google Scholar
  83. O’Connell, C. P.: The gas bladder and its relation to the inner ear in Sardinops caerulea andEngraulis mordax. Fishery Bull. 56, 505–533 (1955).Google Scholar
  84. Offutt, G. C.: Integration of the energy in repeated tone pulses by man and the goldfish. J. Acoust. Soc. Amer. 41, 13–19 (1967).CrossRefGoogle Scholar
  85. Offutt, G. C.: Response of the tautog (Tautoga onitis, teleost) to acoustic stimuli measured by classically conditioning the heart rate. Conditional Reflex 6, 205–214(1971).PubMedGoogle Scholar
  86. Page, C. H.: Electrophysiological study of auditory responses in the goldfish brain. J. Neurophysiol. 33, 116–127 (1970).PubMedGoogle Scholar
  87. Parvulescu, A.: Problems of propagation and processing. In: Marine Bio-Acoustics, Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1964, pp. 87–100.Google Scholar
  88. Platt, C.: Hair cell distribution and orientation in goldfish otolith organs. J. Comp. Neurol. 172,283–298(1977).PubMedCrossRefGoogle Scholar
  89. Platt, C., Popper, A. N.: Otolith organ receptor morphology in herring-like fish. In: Vestibular Function and Morphology. Gualterratti, G. (ed.). New York: Springer- Verlag (1979).Google Scholar
  90. Piddington, R. W.: Central control of auditory input in the goldfish - II. Evidence of action in the free-swimming animal. J. Exp. Biol. 55, 585–610 (1971).PubMedGoogle Scholar
  91. Poggendorf, D.: Die absoluten Hörschwellen des Zwergwelses(Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparatus der Ostariophysen. Z. vergi. Physiol. 34, 222–257(1952).CrossRefGoogle Scholar
  92. Popper, A. N.: Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus). Anim. Behav. 18, 552–562 (1970).CrossRefGoogle Scholar
  93. Popper, A. N.: The effects of size on auditory capacities of the goldfish. J. Aud. Res. 11,239–247(1971).Google Scholar
  94. Popper, A. N.: Auditory threshold in the goldfish (Carassius auratus) as a function of signal duration. J. Acoust. Soc. Amer. 52, 596–602 (1972).CrossRefGoogle Scholar
  95. Popper, A. N.: The response of the swimbladder of the goldfish (Carassius auratus) to acoustic stimuli. J. Exp. Biol. 60, 295–304 (1974).PubMedGoogle Scholar
  96. Popper, A. N.: Ultrastructure of the auditory regions in the inner ear of the lake white- fish. Science. 192, 1020–1023 (1976).PubMedCrossRefGoogle Scholar
  97. Popper, A. N.: A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. J. Morph. 153, 397–418 (1977).CrossRefGoogle Scholar
  98. Popper, A. N.: Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platoryn- chus). J. Comp. Neurol. 181, 117–128 (1978a).PubMedCrossRefGoogle Scholar
  99. Popper, A. N.: A comparative study of the otolithic organs in fishes. Scanning Electron Microscopy. II, 405–416 (1978b).Google Scholar
  100. Popper, A. N.: The ultrastructure of the sacculus and lagena in a moray eel (Gymno- thorax sp.). J. Morphol. 161, 241–256 (1979).CrossRefGoogle Scholar
  101. Popper, A. N.: Organization of the inner ear and auditory processing. In: Fish Neurobiology and Behavior. Northcutt, R. G., Davis, R. E. (eds.). Ann Arbor: Univ. of Michigan Press (in press).Google Scholar
  102. Popper, A. N., Clarke, N. L.: The auditory system of the goldfish (Carassius auratus); effects of intense acoustic stimulation. Comp. Biochem. Physiol. 53A, 11–18 (1976).CrossRefGoogle Scholar
  103. Popper, A. N., Clarke, N. L.: Simultaneous and non-simultaneous auditory masking in the goldfish, Carassius auratus. J. Exp. Biol. 83, 145–158 (1979).PubMedGoogle Scholar
  104. Popper, A. N., Fay, R. R.: Sound detection and processing by teleost fishes: a critical review. J. Acoust. Soc. Amer. 53, 1515–1529 (1973).CrossRefGoogle Scholar
  105. Popper, A. N., Salmon, M., Parvulescu, A.: Sound localization by the Hawaiian squir- relfishes, Myripristis berndti andM. argyromus. Anim. Behav. 21, 86–97 (1973).PubMedCrossRefGoogle Scholar
  106. Pumphrey, R. J.: Hearing. In Physiological Mechanisms in Animal Behavior. Symp. Soc. Exp. Biol. 4, 1–18(1950).Google Scholar
  107. Retzius, G.: Das Gehörorgan der Wirbelthiere. Vol. I. Stockholm: Samson and Wallin (1881).Google Scholar
  108. Rodenburg, M.: Investigations of temporal effects with amplitude modulated signals. In: Psychophysics and Physiology of Hearing. Evans, E., Wilson, J. (eds.). New York: Academic Press, 1977, pp. 429–437.Google Scholar
  109. Salmon, M.: Acoustical behavior of the menpachi, Myripristis berndti, in Hawaii. Pacific Sci. 21, 364–381 (1967).Google Scholar
  110. Sand, O.: An electrophysiological study of auditory masking of clicks in goldfish. Comp. Biochem. Physiol. 40A, 1043–1053 (1971).CrossRefGoogle Scholar
  111. Sand, O.: Directional sensitivity of microphonic potentials from the perch ear. J. Exp. Biol. 60,881–899 (1974).PubMedGoogle Scholar
  112. Sand, O., Enger, P. S.: Evidence for an auditory function of the swimbladder in the cod. J. Exp. Biol. 59, 405–414 (1973).PubMedGoogle Scholar
  113. Sand, O., Hawkins, A. D.: Acoustic properties of the cod swimbladder. J. Exp. Biol. 58,797–820(1973).Google Scholar
  114. Sand, O., Michelsen, A.: Vibration measurements of the perch saccular otolith. J. Comp. Physiol. 123, 85–89 (1978).CrossRefGoogle Scholar
  115. Saunders, J.: Psychophysical analysis of pure tone masking in the parakeet. In: Hearing and Davis. Hirsh, S., Eldridge, D., Hirsh, I., Silverman, S. (eds.). St. Louis: Washington University Press, 1976, pp. 199–212.Google Scholar
  116. Schneider, H.: Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörvermögen, Z. vergi. Physiol. 29, 172–194 (1941).CrossRefGoogle Scholar
  117. Schuijf, A.: Directional hearing of cod (Gadus morhua) under approximate free field conditions. J. Comp. Physiol. 98, 307–332 (1975).CrossRefGoogle Scholar
  118. Schuijf, A.: The phase model of directional hearing in fish. In: Sound Reception in Fish. Schuijf, A., Hawkins, A. D. (eds.). Amsterdam: Elsevier, 1976a, pp. 63–86.Google Scholar
  119. Schuijf, A.: Timing analysis and directional hearing in fish. In: Sound Reception in Fish. Schuijf, A., Hawkins, A. D. (eds.). Amsterdam: Elsevier, 1976b, pp. 81–112.Google Scholar
  120. Schuijf, A., Hawkins, A. D.: Sound Reception in Fish. Vol. 8. Amsterdam: Elsevier (1976).Google Scholar
  121. Steen, J. B.: The swimbladder as a hydrostatic organ. In: Fish Physiology, Vol. IV.Google Scholar
  122. Hoar, W. S., Randall, D. J. (eds.). New York: Academic Press, 1970, pp. 413–443.Google Scholar
  123. Stetter, H.: Untersuchungen über den Gehörsinn der Fische besonders von Phoxinus laevis L. undAmiurus nebulosus Raf. Z. vergi. Physiol. 9, 339–477 (1929).CrossRefGoogle Scholar
  124. Stipetic, E.: Uber das Gehörorgan der Mormyriden. Z. vergi. Physiol. 26, 740–752 (1939).CrossRefGoogle Scholar
  125. Tavolga, W. N.: Sound production and detection. In: Fish Physiology, Vol. V. Hoar, W. S., Randall, D. J. (eds.). New York: Academic Press, 1971, pp. 135–205.Google Scholar
  126. Tavolga, W. N.: Signal/noise ratio and the critical band in fishes. J. Acoust. Soc. Amer. 55, 1323–1333 (1974).CrossRefGoogle Scholar
  127. Tavolga, W. N.: Recent advances in the study of fish audition. In: Sound Reception in Fishes. Tavolga, W. N. (ed.). Benchmark Papers in Animal Behavior, Vol. 7. Stroudsburg, Penna.: Dowden, Hutchinson and Ross, Inc., 1976, pp. 37–52.Google Scholar
  128. Tavolga, W. N.: Mechanisms for directional hearing in the sea catfish (Arius felis). J. Exp. Biol. 67,97–115 (1977).PubMedGoogle Scholar
  129. Tavolga, W. N., Wodinsky, J.: Auditory capacities in fishes. Pure tone thresholds in nine species of marine teleosts. Bull. Am. Mus. Nat. Hist. 126, 177–240(1963).Google Scholar
  130. Vaitulevich, S. F., Ushakov, M. N.: Holographic study of swim bladder vibrations in Cyprinus carpio. Biofizika. 19, 528–533 (1974).PubMedGoogle Scholar
  131. van Bergeijk, W. A.: Directional and non-directional hearing in fish. In: Marine Bio- Acoustics. Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1964, pp. 281–299.Google Scholar
  132. van Bergeijk, W. A.: The evolution of vertebrate hearing. In: Contributions to Sensory Physiology. Neff, W. D. (ed.). New York: Academic Press, 1967a, pp. 1–49.Google Scholar
  133. van Bergeijk, W. A.: Discussion. In: Marine Bio-Acoustics II. Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1967b, pp. 244–245.Google Scholar
  134. Viemeister,: Temporal factors in audition: a systems analysis approach. In: Psycho- physics and Physiology of Hearing. Evans, E., Wilson, J. (eds.). New York: Academic Press, 1977, pp. 419–427.Google Scholar
  135. von Bekesy, G.: Experiments in Hearing. New York: McGraw-Hill (1960).Google Scholar
  136. von Frisch, K.: The sense of hearing in fish. Nature. 141,8–11 (1938).CrossRefGoogle Scholar
  137. Wenz, G. M.: Curious noises and the sonic environment in the ocean. In: Marine Bio Acoustics. Tavolga, W. N. (ed.). Oxford: Pergamon Press, 1964, pp. 101–119.Google Scholar
  138. Werner, C. F.: Das Gehörorgan der Wirbeltiere und des Menschen. Leipzig: G. Thieme (1960).Google Scholar
  139. Wersäll, J., Flock, A., Lundquist, P-G.: Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. Cold Spring Harbor Symp. Quant. Biol. 30,115–145 (1965).Google Scholar
  140. Wever, E. G.: Cochlear stimulation and Lempert’s mobilization theory. Principles and methods. Arch. Otolaryng. 909, 68–73 (1969).Google Scholar
  141. Wever, E. G.: The mechanics of hair-cell stimulation. Trans. Amer. Otol. Soc. 59, 89–107(1971).Google Scholar
  142. Wohlfahrt, T. A.: Untersuchungen über das Tonunterscheidungsvermögen der Elritze (Phoxinus laevis Agass). Z. vergl. Physiol. 26, 570–604 (1939).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Richard R. Fay
    • 1
  • Arthur N. Popper
    • 2
  1. 1.Department of Psychology and Parmly Hearing InstituteLoyola University of ChicagoChicagoUSA
  2. 2.Department of Anatomy, Schools of Medicine and DentistryGeorgetown UniversityUSA

Personalised recommendations