Advertisement

Doubly Infinite Sequences and Series

  • Richard M. Meyer
Part of the Universitext book series (UTX)

Abstract

A natural generalization of the notion of an infinite sequence of real numbers is that of a doubly (or, more generally, multiply) infinite sequence of real numbers \(\left\{ {{{a}_{{m,n}}}} \right\}_{{m,n = 1}}^{\infty }\), briefly {am,n}.

Keywords

Convergence Property Infinite Series Infinite Sequence Absolute Convergence Double Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Additional and Related Material: Section 2

  1. 1.
    Boas, R., “A Primer of Real Functions”, Carus Mathematical Monograph 13, Mathematical Association of America (1961).Google Scholar
  2. 2.
    Bromwich, T., “An Introduction to the Theory of Infinite Series”, Macmillan and Co. (1926).Google Scholar
  3. 3.
    Ford, W., “Divergent Series”, Chelsea Publishing Co., Inc. (1960).Google Scholar
  4. 4.
    Francis, E., “Examples in Infinite Series, with Solutions”, Deighton, Bell and Co. (1953).Google Scholar
  5. 5.
    Goldberg, S., “Probability: An Introduction”, Prentice-Hall, Inc. (1964).Google Scholar
  6. 6.
    Green, J., “Sequences and Series”, Glencoe, Ill. Free Press (1958).Google Scholar
  7. 7.
    Halberstam, H. and K. Roth, “Sequences”, Clarendon Press (1966).Google Scholar
  8. 8.
    Hirschman, I., “Infinite Series”, Holt, Reinhart and Winston, Inc. (1962).Google Scholar
  9. 9.
    Hobson, E., “Theory of Functions of a Real Variable”, Vol, I, Dover Publications, Inc.Google Scholar
  10. 10.
    Hyslop, J., “Infinite Series”, Oliver and Boyd, Ltd. (1959).Google Scholar
  11. 11.
    Jolley, L., “Summation of Series”, Second Edition, Dover Publications Inc. (1961).Google Scholar
  12. 12.
    Knopp, K., “Infinite Sequences and Series”, Dover Publications, Inc.Google Scholar
  13. 13.
    Lipschutz, S., “Schaum’s Outline of Theory and Problems of Set Theory and Related Topics”, Schaum Publishing Co. (1964).Google Scholar
  14. 14.
    Rainville, E., “Infinite Series”, Macmillan and Co. (1963).Google Scholar
  15. 15.
    Royden, H., “Real Analysis”, Macmillan and Co. (1963).Google Scholar
  16. 16.
    Stanaitis, D., “An Introduction to Sequences, Series, and Improper Integrals”, Holden-Day, Inc. (1967).Google Scholar
  17. 17.
    Theilman, H., “Theory of Functions of Real Variables”, Prentice-Hall, Inc. (1959).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Richard M. Meyer
    • 1
  1. 1.Niagara University, College of Arts and SciencesNiagara UniversityUSA

Personalised recommendations