Convex Sets and Convex Functions

  • Richard M. Meyer
Part of the Universitext book series (UTX)


Because of their useful properties, the notions of convex sets and convex functions find many uses in the various areas of Applied Mathematics. We begin with the basic definition of a convex set in n-dimensional Euclidean Space (En), where points are ordered n-tuples of real numbers such as x’ = (x1, x2,…, xn) and y’ = (y1, y2,…,yn).


Convex Function Convex Subset Concave Function Convex Domain Arbitrary Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Additional and Related Material: Section 18

  1. 1.
    Blackwell, D. and M. Girshick, “Theory of Games and Statistical Decisions”, Wiley and Sons, Inc., New York (1954).zbMATHGoogle Scholar
  2. 2.
    Bonnesen, T. and W. Fenchel, “Theorie der Konvexen Korper”, Springer-Verlag, Berlin (1934) and Chelsea Publishing Co., New York (1948).Google Scholar
  3. 3.
    Eggleston, H., “Convexity”, McGraw-Hill, Inc., New York (1964).Google Scholar
  4. 4.
    Eggleston, H., “Problems in Euclidean Space: Applications of Convexity”, Pergamon Press, New York (1957).Google Scholar
  5. 5.
    Fan, K., “Convex Sets and Their Applications”, Argonne National Laboratory, Applied Mathematics Summer Lectures (1959).Google Scholar
  6. 6.
    Fenchel, W., “Convex Cones, Sets and Functions”, Princeton University Press (1953).Google Scholar
  7. 7.
    Garvin, W., “Introduction to Linear Programming”, McGraw-Hill, Inc., New York (1960).Google Scholar
  8. 8.
    Hardy, G., Littlewood, J. and G. Pólya, “Inequalities”, Cambridge University Press (1934).Google Scholar
  9. 9.
    Karlin, S., “Mathematical Methods and Theory in Games, Programming, and Economics”, Addison-Wesley, Inc., Reading, Massachusetts (1959).Google Scholar
  10. 10.
    McKinsey, J., “Introduction to the Theory of Games”, McGraw-Hill, Inc., New York (1952).zbMATHGoogle Scholar
  11. 11.
    Mitrinovie, D., “Analytic Inequalities”, Springer-Verlag, Berlin (1970).Google Scholar
  12. 12.
    Neumann, J. von and O. Morgenstern, “Theory of Games and Economic Behavior”, (Second Ed. ), Princeton University Press (1947).Google Scholar
  13. 13.
    Roberts, A., “Convex Functions”, Academic Press, New York (1973).zbMATHGoogle Scholar
  14. 14.
    Stoer, J., “Convexity and Optimization in Finite Dimensions”, Springer-Verlag, New York (1970).zbMATHGoogle Scholar
  15. 15.
    Valentine, F., “Convex Sets”, McGraw-Hill, Inc., New York (1964).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Richard M. Meyer
    • 1
  1. 1.Niagara University, College of Arts and SciencesNiagara UniversityUSA

Personalised recommendations