Matrices and Determinants

  • Richard M. Meyer
Part of the Universitext book series (UTX)


The notion of a matrix finds a wide variety of uses in Applied Mathematics. Here we shall examine some of the more important properties of matrices and determinants of complex numbers1.


Characteristic Root Algebraic Property Stochastic Matrice Rectangular Array Unit Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Additional and Related Material: Section 14

  1. 1.
    Ayres, F., “Schaum’s Outline of Theory and Problems of Matrices”, Schaum Publishing Co. (1962).Google Scholar
  2. 2.
    Browne, E., “Introduction to the Theory of Determinants and Matrices”, University of North Carolina Press (1958).Google Scholar
  3. 3.
    Cullen, C., “Matrices and Linear Transformations”, Addison-Wesley, Inc. (1966).zbMATHGoogle Scholar
  4. 4.
    Eves, H., “Elementary Matrix Theory”, Allyn and Bacon, Inc. (1966).zbMATHGoogle Scholar
  5. 5.
    Finkbeiner, D., “Introduction to Matrices and Linear Transformations”, W. H. Freeman, Inc. (1960).Google Scholar
  6. 6.
    Gantmacher, F., “The Theory of Matrices”, Chelsea Publishing Co. (1959).Google Scholar
  7. 7.
    Greybill, F., “Introduction to Matrices with Applications in Statistics”, Wadsworth Publishing Co. (1969).Google Scholar
  8. 8.
    Hollingsworth, C., “Vectors, Matrices and Group Theory for Scientists and Engineers”, McGraw-Hill, Inc. (1967).Google Scholar
  9. 9.
    Johnston, J., “Linear Equations and Matrices”, Addison-Wesley, Inc. (1966).zbMATHGoogle Scholar
  10. 10.
    Lancaster, P., “Theory of Matrices”, Academic Press (1969).Google Scholar
  11. 11.
    Macduffee, C., “Vectors and Matrices”, Carus Mathematical Monograph 7, Mathematical Association of America (1961).Google Scholar
  12. 12.
    Marcus, M., “A Survey of Matrix Theory and Matrix Inequalities”, Allyn and Bacon, Inc. (1964).zbMATHGoogle Scholar
  13. 13.
    Murdoch, D., “Linear Algebra for Undergraduates”, John Wiley and Sons, Inc. (1957).zbMATHGoogle Scholar
  14. 14.
    Pease, M., “Methods of Matrix Algebra”, Academic Press (1965).Google Scholar
  15. 15.
    Pipes, L., “Matrix Methods for Engineers”, Prentice-Hall, Inc. (1963).Google Scholar
  16. 16.
    Schkade, L., “Vectors and Matrices”, C. E. Merrill Publishing Co. (1967).Google Scholar
  17. 17.
    Schwartz, J., “Introduction to Matrices and Vectors”, McGraw-Hill, Inc. (1961).Google Scholar
  18. 18.
    Stoll, R., “Linear Algebra and Matrix Theory”, McGraw-Hill, Inc. (1952).zbMATHGoogle Scholar
  19. 19.
    Thrall, R., “Vector Spaces and Matrices”, John Wiley and Sons, Inc. (1957).zbMATHGoogle Scholar
  20. 20.
    Turnbull, H., “Theory of Determinants, Matrices, and Invariants”, Dover Publications, Inc.Google Scholar
  21. 21.
    Wade, T., “The Algebra of Vectors and Matrices”, John Wiley and Sons, Inc. (1951).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Richard M. Meyer
    • 1
  1. 1.Niagara University, College of Arts and SciencesNiagara UniversityUSA

Personalised recommendations