Ultrastructural and Enzyme Changes in Muscles with Exercise

  • Philip D. Golinick
  • C. David Ianuzzo
  • Douglas W. King
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 11)


It is generally accepted that the inunediate energy source for muscular contraction comes from hydrolysis of the terminal phosphate bond of adenosine triphosphate (ATP). ATP is supplied to the contractile apparatus primarily from the oxidation of the carbohydrates and fats stored in the muscle or brought to it by the circulation. Most of the ATP is produced by the aerobic pathways of the mitochondria. Thus, the functional capacity of a muscle may be related to the ability of the mitochondria to provide a continuing, adequate supply of ATP. The purpose of this paper is to consider some of the changes that occur in the ultrastructure and enzyme activity, particularly those of the mitochondria, of skeletal and cardiac muscle as a result of acute or chronic exercise.


Skeletal Muscle Mitochondrial Fraction Exhaustive Exercise Single Bout Oxygen Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ARCOS, J. C., R. S. SOHOL, S. SUN, M. F. ARGUS, and G. S. BURCH. Changes in ultrastructure and respiratory control in mitochondria of rat heart hypertrophied by exercise. Exptl. Mol. Pathol. 8: 49–65, 1968.CrossRefGoogle Scholar
  2. 2.
    BARNARD, R. J., V. R. EDGERTON, and J. B. PETER. Effect of exercise on skeletal muscle. I. Biochemical and histochemical properties. J. Appl. Physiol. 28: 762–766, 1970.PubMedGoogle Scholar
  3. 3.
    BISCHOFF, M. W, W. D. DEAN, T. J. BUCCI, and L. A. FRIES. Ultrastructural changes in myocardium of animals after five months residence at 14,ll0 feet. Federation Proc. 28: 1268–1273, 1Google Scholar
  4. 4.
    BRYANT, R. W., W. A. THOMAS, and R. M. O’NEIL. An electron microscopic study of myocardial ischemia in the rat. Circulation Res. 6: 699–709, 1958.PubMedGoogle Scholar
  5. 5.
    CAULFIELD, J., and F. KLIONSKY. Myocardial ischemia and early infraction. An electron microscopic study. Am. J. Pathol. 35: 489–523, 1959.PubMedGoogle Scholar
  6. 6.
    CLAUSEN, J. P., and J. TRAP-JENSEN. Effect of training on muscular blood flow during exercise. Acta Physiol. Scand. 74: 23A, 1968.CrossRefGoogle Scholar
  7. 7.
    CLOSE, R. Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union. J. Physiol., London 204: 331–346, 1969.Google Scholar
  8. 8.
    COBB, L. A., P. H. SMITH, S. IWAI, and F. A. SHORT. External iliac vein flow: its response to exercise and relation to lactate production. J. Appl. Physiol. 26: 606–610, 1969.PubMedGoogle Scholar
  9. 9.
    COOPERSTEIN, S. J., A. LAZOROW, and N. J. KURFESS. A microspectrophotometric method for the determination of succinic dehydrogenase. J. Biol. Chem. 186: 129–139, 1950.PubMedGoogle Scholar
  10. 10.
    EKBLOM, B., P. O. ASTRAND, B. SALTIN, J. STENBERG, and B. WALLSTROM. Effect of training on circulatory response to exercise. J. Appl. Physiol. 24: 518–528, 1968.PubMedGoogle Scholar
  11. 11.
    FURBERG, C., and G. V. SCHMALENSEE. Beta-adrenergic blockade and central circulation during exercise in sitting position in health subjects. Acta Physiol. Scand. 73: 435–446, 1968.PubMedGoogle Scholar
  12. 12.
    GOLLNICK, P. D., and C. D. IANUZZO. Colonic temperature response of rats during exercise. J. Appl. Physiol. 24: 747–750, 1968.PubMedGoogle Scholar
  13. 13.
    GOLLNICK, P. D., and D. W. KING. Effect of exercise and training on mitochondria of rat skeletal muscle. Am. J. Physiol. 216: 1502–1509, 1969.PubMedGoogle Scholar
  14. 14.
    GOLLNICK, P. D., C. D. IANUZZO, C. WILLIAMS, and T. R. HILL. Effect of prolonged, severe exercise on the ultrastructure of human skeletal muscle. Intern. Z. angew. Physiol. 27: 257–265, 1969.Google Scholar
  15. 15.
    GORNALL, A. G., C. J. BARDWILL, and N. A. DAVID. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177: 751–766, 1949.PubMedGoogle Scholar
  16. 16.
    GOULD, M. K., and W. A. RAWLINSON. Biochemical adaptation as a response to exercise. I. Effect of swimming on the levels of lactic dehydrogenase, malic dehydrogenase and phosphorylase in muscles of 8-, 11-, and 15-week-old rats. Biochem. J. 73: 41–44, 1959.PubMedGoogle Scholar
  17. 17.
    GRIMBY, G., E. HÄGGENDAL, and B. SALTIN. Local xenon 133 clearance from the quadriceps muscle during exercise in man. J. Appl. Physiol. 22: 305–310, 1967.PubMedGoogle Scholar
  18. 18.
    GUSTAFSSON, R., J. R. TATA, O. LINDBERG, and L. ERNSTER. The relationship between the structure and activity of rat skeletal muscle mitochondria after thyroidectomy and thyroid hormone treatment. J. Cell. Biol. 26: 555–578, 1965.PubMedCrossRefGoogle Scholar
  19. 19.
    HEARN, G. R. and W. W. WAINIO. Succinic dehydrogenase activity of heart and skeletal muscle of exercised rats. Am. J. Physiol. 185: 318–350, 1956.Google Scholar
  20. 20.
    HERDSON, P. B., H. M. SOMMERS, and R. B. JENNINGS. A comparative study of the fine structure of normal and ischemic dog myocardium with special reference to early changes following temporary occlusion of a coronary artery. Am. J. Pathol. 46: 367–386, 1965.PubMedGoogle Scholar
  21. 21.
    HERMANSEN, L., E. HULTMAN, and B. SALTIN. Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand. 71: 129–139, 1967PubMedCrossRefGoogle Scholar
  22. 22.
    HOELSCHER, B., O. H. JUST, and H. J. MERKER. Studies by electron microscope on various forms of induced cardiac arrest in dog and rabbit. Surgery 49: 492–499, 1961.PubMedGoogle Scholar
  23. 23.
    HOHORST, H. J., M. REIM, and H. BARTELS. Studies on the creatine kinase equilibrium in muscle and the significance of the ATP and ADP levels. Biochem. Biophys. Res. Commun. 7: 142–146, 1962.PubMedCrossRefGoogle Scholar
  24. 24.
    HOLLOSZY, J. O. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242: 2278–2282, 1967.PubMedGoogle Scholar
  25. 25.
    HULTMAN, E. Muscle glycogen in man determined in needle biopsy specimens. Method and normal values. Scand. J. Clin. Lab. Invest. 19: Suppl. 94, 1–63, 1967.Google Scholar
  26. 26.
    HULTMAN, E., J. BERGSTROM, and N. N. ANDERSON. Breakdown and resynthesis of phosphoryicreatine and adenosine triphosphate in connection with muscular work in man. Scand. J. Clin. Lab. Invest. 19: 56–66, 1967.PubMedCrossRefGoogle Scholar
  27. 27.
    KING, D. W., and P. O. GOLLNICK. Ultrastructure of rat heart and liver after exhaustive exercise. Am. J. Physiol. 218: 1150–1155, 1970.PubMedGoogle Scholar
  28. 28.
    KLASSEN, G. A., G. M. ANDREW, and N. R. BECKLAKE. Effect of training on total and regional blood flow and metabolism in paddlers. J. Appl. Physiol. 28: 397–406, 1970.PubMedGoogle Scholar
  29. 29.
    KRAUS, H., R. KIRSTEN, and J. R. WOLFF. Die Wirkung von Schwimmund Lauftraining auf die cellu1are Funktion und Struktur des Muskels. Pflügers Arch. 308: 57–79, 1969.PubMedCrossRefGoogle Scholar
  30. 30.
    LAUGENS, R. P., B.B. LOZADA, C. L. GOMEZ DUMM, and A. R. BERAMENDI. Effect of acute and exhaustive exercise upon the fine structure of heart mitochondria. Experientia 22: 244–246, 1966.CrossRefGoogle Scholar
  31. 31.
    LAUGENS, R. P., and C. L. A. GOMEZ DUMM. Fine structure of myocardial mitochondria in rats after exercise for one-half to two hours. Circulation Res. 21: 271–279, 1967.Google Scholar
  32. 32.
    LAUGENS, R. P., and C. L. GOMEZ DUMM. Deoxyribonucleic acid synthesis in the heart mitochondria after acute and exhaustive exercise. Experientia 21: 163–164, 1968.CrossRefGoogle Scholar
  33. 33.
    LOWRY, O. H., N. J. ROSEBROUGH, A. L. FARR, and R. J. RANDLE. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275, 1951.PubMedGoogle Scholar
  34. 34.
    MOLBERT, E. Die Herzmuskelzelle nach akuter Oxydationsherrmiung mi elecktronenmikroskopishen Bild. Beirt. Pathol. Anat. Ailgein. Pathol. 118: 421–435, 1958.Google Scholar
  35. 35.
    MORGAN, T. E., F. A. SHORT, and L. A. COBB. Effect of long-term exercise on skeletal muscle lipid composition. Am. J. Phjsiol. 216: 82–86, 1969.Google Scholar
  36. 36.
    PELOSI, G., and G. AGLIATI. The heart muscle in functional overload and hypoxia. Lab. Invest. 18: 86–93, 1968.PubMedGoogle Scholar
  37. 37.
    ROMANUL, F. C. A., and J. P. VAN DER NEULEN. Slow and fast muscles after cross innervation. Arch. Neurol. 17: 387–402, 1967.PubMedCrossRefGoogle Scholar
  38. 38.
    ROWELL, L. B. “Fatigue and ‘Disorders’ of Normal Cardiovascular Regulation.” In Phyoloand Pathor of Fatigue. E. Simonson, ed. Springfield: C. C. Thomas, In Press.Google Scholar
  39. 39.
    SACKTOR, B., and E. C. HURLBUT. Regulation of metabolism in working muscle in vivo. II. Concentration of adenosine nucleotides, arginine phosphate, and inorganic phosphate in insect flight muscle during flight. J.Biol. Chem. 2141: 632–6314, 1966.Google Scholar
  40. 40.
    SALMONS, S., and G. VRBOVA. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J. Physiol., London 201: 535–549, 1969.Google Scholar
  41. 41.
    SALTIN, B., G. BLOMQVIST, J. H. MITCHELL, R. L. JOHNSON, JR., K. WILDENTHAL, and C. B. CHAPMAN. Response to exercise after bed rest and after training. Circulation 38: Suppl. 7, 1–78, 1968.Google Scholar
  42. 42.
    SULKIN, N. N., and D. F. SULKIN. An electron microscopic study of the effects of chronic hypoxia on cardiac muscle, hepatic, and autonomic ganglion cells. Lab. Invest. 114: 1523–1546, 1965.Google Scholar
  43. 43.
    VALLYATHAN, N. V., I. GRINYER, and J. C. GEORGE. Effect of fasting and exercise on lipid levels in muscle. A cytological and biochemical study. Can. J. Zool. 148: 377–383, 1970.CrossRefGoogle Scholar
  44. 44.
    WEINBACK, E. C., J. GARBUS, and H. G. SHEFFIELD. Morpholor of mitochondria in the coupled, uncoupled, and re-coupled stages. Exptl. Cell Res. 146: 129–143, 1967.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Philip D. Golinick
    • 1
  • C. David Ianuzzo
    • 1
  • Douglas W. King
    • 1
  1. 1.Exercise Physiology Laboratory, Department of Physical Education for Men, and Electron Microscope CenterWashington State UniversityPullmanUSA

Personalised recommendations