Advertisement

Chemical Aspects of New Superconducting Materials and Fabrication Techniques

  • Melvin G. Bowman
Conference paper

Abstract

Significant progress has been made in recent years in thermonuclear research. For continued progress leading to economically attractive fusion reactors the use of large superconducting magnets for the heating and confinement of plasmas appears to be necessary. Similarly, superconducting transmission line networks will be required for the distribution of power from large fusion reactors. For each application, the “lbest” superconducting material may exhibit different properties, but for both uses, the search for new and better superconducting materials and fabrication methods will be a continuing requirement. Theories of superconductivity are very successful in explaining properties of the superconducting state and the origin of superconducting electron pairs, but up to the present have been of no value in guiding the search for better superconducting materials. Progress has been made through the use of empirical correlations of normal state properties with superconducting transition temperatures. These includes average number of valence electrons per atom versus Tc; valence electron density versus Tc; lattice parameter or M-M distances (M = transition metal) versus Tc in special crystal structures; and variations of these approaches with attempts to include lattice vibration properties. Recent work has demonstrated that stoichiometry and ordering are most important and suggests that existing empirical correlations may not be useful in the search for new superconductors. New developments indicate that many high temperature superconductors will be f ound in complex ternary and quaternary systems.

Innovations in fabrication methods promise that the highest Tc and critical field materials may soon be fabricated in the form of relatively ductile multifilament composite wires. This will contribute greatly to the application of superconducting technology in controlled thermonuclear reactors.

Keywords

High Temperature Superconductivity Superconducting Material Valence Electron Concentration Valence Electron Density Normal State Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charles Kittel, “Introduction to Solid State Physics,” page 453, 2nd Edition. John Wiley & Sons, Inc. Fourth Printing, April 1960.Google Scholar
  2. 2.
    G. F. Hardy and J. K. Hulm, Phys. Rev. 93, 1004 (1954).CrossRefGoogle Scholar
  3. 3.
    B. T. Matthias, T. H. Geballe, S. Geller and E. Corenzwit, PhyS. Rev. 95, 1435 (1954).CrossRefGoogle Scholar
  4. 4.
    J. E. Kunzler, C. Buehler, F. S. L. Hsu and J. H. Wernick, PhyS. Rev. Letters 6, 89 (1961).CrossRefGoogle Scholar
  5. 5.
    G. W. Webb, American Institute of Physics Proceedings, No. 4, “Superconductivity in d-and f-band Metals,” D. H. Douglas, Editor, American Institute of Physics, New York (1972). Also, G. W. Webb, L. J. Vieland, R. E. Miller and A. Wicklund, Sol. State Com., 9, 1769 (197).Google Scholar
  6. 6.
    B. T. Matthias, T. H. Geballe, L. D. Longinotti, E. Corenzwit, G. W. Hull, R. H. Willens and J. P. Maita, Science 156, 645 (1967).CrossRefGoogle Scholar
  7. 7.
    G. Arrhenius, E. Corenzwit, R. Fitzgerald, G. W. Hull, Jr., H. L. Luo, B. T. Matthias and W. H. Zachariasen, Proc. Natl, Acad. Sci. U.S. 61, 621 (1968).CrossRefGoogle Scholar
  8. 8.
    W. Desorbo, PhyS. Rev. A, 140(3), 914 (1965).Google Scholar
  9. 9.
    J. Sutton and C. Baker, Phys. Lett. Netherh. 21, 601 (1966).CrossRefGoogle Scholar
  10. 10.
    S. J. Williamson, Phys. Letters 23, 629 (1966).CrossRefGoogle Scholar
  11. 11.
    S. Foner, E. J. McNiff, Jr., B. T. Matthias, T. H. Geballe, R. H. Willens and E. Corenzwit, Phys. Lett. 31A, 349 (1970).Google Scholar
  12. 12.
    S. Foner, E. J. McNiff, Jr., B. T. Matthias and E. Corenzwit, Proc. II. Int. Conf. Low Temp. Phys., Vol II, 1925 (1968).Google Scholar
  13. 13.
    B. T. Matthias, Comments on Solid State Physics 3, 93 (1970).Google Scholar
  14. 14.
    B. T. Matthias, Physics Today 24, No. 8, page 21 (1971).CrossRefGoogle Scholar
  15. 15.
    J. Bardeen, L. Cooper and R. Schrieffer, Phys. Rev. 106, 162 (1957) and Phys. Rev. 108, 1175 (1957). Discussed by P. G. de Gennes, “Superconductivity of Metals and Alloys,” W. A. Benjamin, Inc. (1966).Google Scholar
  16. 16.
    W. L. McMillan, Phys. Rev. 167, No. 2, 331 (1968).CrossRefGoogle Scholar
  17. 17.
    B. T. Matthias, Phys. Rev. 97, No. 1, 74 (1955).CrossRefGoogle Scholar
  18. 18.
    B. W. Roberts, Intermetallic Compounds, Editor J. H. Westbrook (John Wiley & Sons, Inc., New York, 1967) chapter 29.Google Scholar
  19. 19.
    N. Pessall and J. K. Hulm, Physics 3, 311(1966).Google Scholar
  20. 20.
    A. Muller, Z. Naturforsch. 24a, 1134 (1969).Google Scholar
  21. 21.
    L. R. Newkirkand C. C. Tsuei, Phys Stat. Sol. (a) 4, 387 (1971).CrossRefGoogle Scholar
  22. 22.
    A. L. Giorgi, E. G. Szklarz, E. K. Storms, A. L. Bowman, and B. T. Matthias, Phys. Rev., 125, 837 (1962).CrossRefGoogle Scholar
  23. 23.
    A. L. Giorgi, E. G. Szklarz and T. C. Wallace. Presented at Meeting of the British Ceramic Society, Basic Science Section, London, England, Dec. 1966. Published in Proceedings of the British Ceramic Society, No. 10, page 183 (1968).Google Scholar
  24. 24.
    A. L. Giorgi, E. G. Szklarz, M. C. Krupka, T. C. Wallace and N. H. Krikorian, J. Less-Common Metals, 14, 247 (1968).CrossRefGoogle Scholar
  25. 25.
    M. C. Krupka, A. L. Giorgi, N. H. Krikorian and E. G. Szklarz, J. Less-Common Metals, 17, 91 (1969).CrossRefGoogle Scholar
  26. 26.
    N. H. Krikorian, A. L. Giorgi, E. G. Szklarz, M. C. Krupka and B. T. Matthias, J. Less-Common Metals, 19, 253 (1969).CrossRefGoogle Scholar
  27. 27.
    A. L. Giorgi, E. G. Szklarz, M. C. Krupka and N. H. Krikorian, J. Less-Common Metals, 17, 121 (1969).CrossRefGoogle Scholar
  28. 28.
    M. C. Krupka, J. Less Common Metals, 20, 135 (1970).CrossRefGoogle Scholar
  29. 29.
    M. C. Krupka, A. L. Giorgi, N. H. Krikorian and E. G. Szklarz, J. Less-Common Metals, 19, 113 (1969).CrossRefGoogle Scholar
  30. 30.
    L. Brewers: Electronic Structure and Alloy Chemistry of the Transition Elements, P. A. Breck, Ed., pp. 221–235, Interscience, New York, 1963; Dover, N.Y., 1965, and High Strength Materials, V. F. Zackay, Ed., Chap. 2, John Wiley, N.Y. (1965).Google Scholar
  31. 31.
    B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit and G. W. Hull, Jr., Phys. Rev. 130, No. 5A, A-1501 (1965).Google Scholar
  32. 32.
    A. Müller, Z. Naturforsch, 25a, 1659 (1970).Google Scholar
  33. 33.
    A. L. Giorgi, E. G. Szklarz and J. D. Farr, Los Alamos Scientific Laboratory, to be published.Google Scholar
  34. 34.
    G. W. Webb, L. J. Vieland, R. E. Miller and A. Wicklund, Sol. State Com., 9, 1769 (1971).CrossRefGoogle Scholar
  35. 35.
    T. F. Smith, AIP Conference Proceedings No. 4, page 293, edited by D. H. Douglas, American Institute of Physics, New York (1972), and J. Low. Temp, Phys. December (1971).Google Scholar
  36. 36.
    L. F. Mattheis, Phys. Rev. 138, A 112 (1965).CrossRefGoogle Scholar
  37. 37.
    J. C. Phillips, PhyS. Rev. Letters, 26, No. 10, March (1971).Google Scholar
  38. 38.
    H. R. Zeller, Phys. Rev. B, No. 5 March (1972).Google Scholar
  39. 39.
    Marvin L. Cohen and P. W. Anderson, AIP Conference Proceedings, No. 4, page 17, edited by D. H. Douglas, American Institute of Physics, New York (1972).Google Scholar
  40. 40.
    B. T. Matthias, E. Corenzwit, A. S. Cooper and L. D. Longinotti, Proc. Natl. Acad. Sci., 68, 56 (1971).CrossRefGoogle Scholar
  41. 41.
    B. T. Matthias, AIP Conference Proceedings, No. 4, page 367, edited by D. H. Douglas, American Institute of Physics, New York (1972).Google Scholar
  42. 42.
    H. E. Barz, A. S. Cooper, E. Corenzwit, M. Marezio, B. T. Matthias and P. H. Schmidt, Science, 175, 884 (1972).CrossRefGoogle Scholar
  43. 43.
    A. L. Giorgi, E.G. Szklarz and M. C. Krupka, Los Alamos Scientific Laboratory, private communication (to be published).Google Scholar
  44. 44.
    Martin N. Wilson, presented at 1972 Applied Superconductivity Conference, Annapolis, Md., May 1–3 (1972).Google Scholar
  45. 45.
    M. N. Wilson, C. R. Walters, J. D. Levin, P. F. Smith and A. H. Spurway, J. Phys. D: Appl. Phys., 3, 1517–1585 (1970).CrossRefGoogle Scholar
  46. 46.
    A. R. Kaufmann and J. J. Pickett, Bull. Am. Phys. Soc. 15, 838 (1970).Google Scholar
  47. 47.
    K. Tachikawa, International Cryogenic Engineering Conference, Berlin (1970) (unpublished); Iliffe Sci. Tech. Publ. 339 (1971).Google Scholar
  48. 48.
    M. Suenagaand, W. B. Sampson, Applied Phys. Letters, Vole 18, No. 12, 584 (1971).CrossRefGoogle Scholar
  49. 49.
    M. Suenaga and W. B. Sampson, presented at the 1972 Applied Superconductivity Conference, Annapolis, MD, May 1–3 (1972).Google Scholar
  50. 50.
    J. E. Crow and M. Suenaga, presented at the 1972 Applied Superconductivity Conference, Annapolis, MD, May 1–3 (1972).Google Scholar
  51. 51.
    Earl R. Parker, presented at the Annual Review Symposium of the United States Atomic Energy Commission, Inorganic Materials Research Division, Lawrence Berkeley Laboratory, Berkeley, CA, Feb. 3 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Melvin G. Bowman
    • 1
  1. 1.Los Alamos Scientific LaboratoryLos AlamosUSA

Personalised recommendations