Skip to main content

Chemical Aspects of New Superconducting Materials and Fabrication Techniques

  • Conference paper
The Chemistry of Fusion Technology
  • 120 Accesses

Abstract

Significant progress has been made in recent years in thermonuclear research. For continued progress leading to economically attractive fusion reactors the use of large superconducting magnets for the heating and confinement of plasmas appears to be necessary. Similarly, superconducting transmission line networks will be required for the distribution of power from large fusion reactors. For each application, the “lbest” superconducting material may exhibit different properties, but for both uses, the search for new and better superconducting materials and fabrication methods will be a continuing requirement. Theories of superconductivity are very successful in explaining properties of the superconducting state and the origin of superconducting electron pairs, but up to the present have been of no value in guiding the search for better superconducting materials. Progress has been made through the use of empirical correlations of normal state properties with superconducting transition temperatures. These includes average number of valence electrons per atom versus Tc; valence electron density versus Tc; lattice parameter or M-M distances (M = transition metal) versus Tc in special crystal structures; and variations of these approaches with attempts to include lattice vibration properties. Recent work has demonstrated that stoichiometry and ordering are most important and suggests that existing empirical correlations may not be useful in the search for new superconductors. New developments indicate that many high temperature superconductors will be f ound in complex ternary and quaternary systems.

Innovations in fabrication methods promise that the highest Tc and critical field materials may soon be fabricated in the form of relatively ductile multifilament composite wires. This will contribute greatly to the application of superconducting technology in controlled thermonuclear reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charles Kittel, “Introduction to Solid State Physics,” page 453, 2nd Edition. John Wiley & Sons, Inc. Fourth Printing, April 1960.

    Google Scholar 

  2. G. F. Hardy and J. K. Hulm, Phys. Rev. 93, 1004 (1954).

    Article  Google Scholar 

  3. B. T. Matthias, T. H. Geballe, S. Geller and E. Corenzwit, PhyS. Rev. 95, 1435 (1954).

    Article  Google Scholar 

  4. J. E. Kunzler, C. Buehler, F. S. L. Hsu and J. H. Wernick, PhyS. Rev. Letters 6, 89 (1961).

    Article  Google Scholar 

  5. G. W. Webb, American Institute of Physics Proceedings, No. 4, “Superconductivity in d-and f-band Metals,” D. H. Douglas, Editor, American Institute of Physics, New York (1972). Also, G. W. Webb, L. J. Vieland, R. E. Miller and A. Wicklund, Sol. State Com., 9, 1769 (197).

    Google Scholar 

  6. B. T. Matthias, T. H. Geballe, L. D. Longinotti, E. Corenzwit, G. W. Hull, R. H. Willens and J. P. Maita, Science 156, 645 (1967).

    Article  Google Scholar 

  7. G. Arrhenius, E. Corenzwit, R. Fitzgerald, G. W. Hull, Jr., H. L. Luo, B. T. Matthias and W. H. Zachariasen, Proc. Natl, Acad. Sci. U.S. 61, 621 (1968).

    Article  Google Scholar 

  8. W. Desorbo, PhyS. Rev. A, 140(3), 914 (1965).

    Google Scholar 

  9. J. Sutton and C. Baker, Phys. Lett. Netherh. 21, 601 (1966).

    Article  Google Scholar 

  10. S. J. Williamson, Phys. Letters 23, 629 (1966).

    Article  Google Scholar 

  11. S. Foner, E. J. McNiff, Jr., B. T. Matthias, T. H. Geballe, R. H. Willens and E. Corenzwit, Phys. Lett. 31A, 349 (1970).

    Google Scholar 

  12. S. Foner, E. J. McNiff, Jr., B. T. Matthias and E. Corenzwit, Proc. II. Int. Conf. Low Temp. Phys., Vol II, 1925 (1968).

    Google Scholar 

  13. B. T. Matthias, Comments on Solid State Physics 3, 93 (1970).

    Google Scholar 

  14. B. T. Matthias, Physics Today 24, No. 8, page 21 (1971).

    Article  Google Scholar 

  15. J. Bardeen, L. Cooper and R. Schrieffer, Phys. Rev. 106, 162 (1957) and Phys. Rev. 108, 1175 (1957). Discussed by P. G. de Gennes, “Superconductivity of Metals and Alloys,” W. A. Benjamin, Inc. (1966).

    Google Scholar 

  16. W. L. McMillan, Phys. Rev. 167, No. 2, 331 (1968).

    Article  Google Scholar 

  17. B. T. Matthias, Phys. Rev. 97, No. 1, 74 (1955).

    Article  Google Scholar 

  18. B. W. Roberts, Intermetallic Compounds, Editor J. H. Westbrook (John Wiley & Sons, Inc., New York, 1967) chapter 29.

    Google Scholar 

  19. N. Pessall and J. K. Hulm, Physics 3, 311(1966).

    Google Scholar 

  20. A. Muller, Z. Naturforsch. 24a, 1134 (1969).

    Google Scholar 

  21. L. R. Newkirkand C. C. Tsuei, Phys Stat. Sol. (a) 4, 387 (1971).

    Article  Google Scholar 

  22. A. L. Giorgi, E. G. Szklarz, E. K. Storms, A. L. Bowman, and B. T. Matthias, Phys. Rev., 125, 837 (1962).

    Article  Google Scholar 

  23. A. L. Giorgi, E. G. Szklarz and T. C. Wallace. Presented at Meeting of the British Ceramic Society, Basic Science Section, London, England, Dec. 1966. Published in Proceedings of the British Ceramic Society, No. 10, page 183 (1968).

    Google Scholar 

  24. A. L. Giorgi, E. G. Szklarz, M. C. Krupka, T. C. Wallace and N. H. Krikorian, J. Less-Common Metals, 14, 247 (1968).

    Article  Google Scholar 

  25. M. C. Krupka, A. L. Giorgi, N. H. Krikorian and E. G. Szklarz, J. Less-Common Metals, 17, 91 (1969).

    Article  Google Scholar 

  26. N. H. Krikorian, A. L. Giorgi, E. G. Szklarz, M. C. Krupka and B. T. Matthias, J. Less-Common Metals, 19, 253 (1969).

    Article  Google Scholar 

  27. A. L. Giorgi, E. G. Szklarz, M. C. Krupka and N. H. Krikorian, J. Less-Common Metals, 17, 121 (1969).

    Article  Google Scholar 

  28. M. C. Krupka, J. Less Common Metals, 20, 135 (1970).

    Article  Google Scholar 

  29. M. C. Krupka, A. L. Giorgi, N. H. Krikorian and E. G. Szklarz, J. Less-Common Metals, 19, 113 (1969).

    Article  Google Scholar 

  30. L. Brewers: Electronic Structure and Alloy Chemistry of the Transition Elements, P. A. Breck, Ed., pp. 221–235, Interscience, New York, 1963; Dover, N.Y., 1965, and High Strength Materials, V. F. Zackay, Ed., Chap. 2, John Wiley, N.Y. (1965).

    Google Scholar 

  31. B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit and G. W. Hull, Jr., Phys. Rev. 130, No. 5A, A-1501 (1965).

    Google Scholar 

  32. A. Müller, Z. Naturforsch, 25a, 1659 (1970).

    Google Scholar 

  33. A. L. Giorgi, E. G. Szklarz and J. D. Farr, Los Alamos Scientific Laboratory, to be published.

    Google Scholar 

  34. G. W. Webb, L. J. Vieland, R. E. Miller and A. Wicklund, Sol. State Com., 9, 1769 (1971).

    Article  Google Scholar 

  35. T. F. Smith, AIP Conference Proceedings No. 4, page 293, edited by D. H. Douglas, American Institute of Physics, New York (1972), and J. Low. Temp, Phys. December (1971).

    Google Scholar 

  36. L. F. Mattheis, Phys. Rev. 138, A 112 (1965).

    Article  Google Scholar 

  37. J. C. Phillips, PhyS. Rev. Letters, 26, No. 10, March (1971).

    Google Scholar 

  38. H. R. Zeller, Phys. Rev. B, No. 5 March (1972).

    Google Scholar 

  39. Marvin L. Cohen and P. W. Anderson, AIP Conference Proceedings, No. 4, page 17, edited by D. H. Douglas, American Institute of Physics, New York (1972).

    Google Scholar 

  40. B. T. Matthias, E. Corenzwit, A. S. Cooper and L. D. Longinotti, Proc. Natl. Acad. Sci., 68, 56 (1971).

    Article  Google Scholar 

  41. B. T. Matthias, AIP Conference Proceedings, No. 4, page 367, edited by D. H. Douglas, American Institute of Physics, New York (1972).

    Google Scholar 

  42. H. E. Barz, A. S. Cooper, E. Corenzwit, M. Marezio, B. T. Matthias and P. H. Schmidt, Science, 175, 884 (1972).

    Article  Google Scholar 

  43. A. L. Giorgi, E.G. Szklarz and M. C. Krupka, Los Alamos Scientific Laboratory, private communication (to be published).

    Google Scholar 

  44. Martin N. Wilson, presented at 1972 Applied Superconductivity Conference, Annapolis, Md., May 1–3 (1972).

    Google Scholar 

  45. M. N. Wilson, C. R. Walters, J. D. Levin, P. F. Smith and A. H. Spurway, J. Phys. D: Appl. Phys., 3, 1517–1585 (1970).

    Article  Google Scholar 

  46. A. R. Kaufmann and J. J. Pickett, Bull. Am. Phys. Soc. 15, 838 (1970).

    Google Scholar 

  47. K. Tachikawa, International Cryogenic Engineering Conference, Berlin (1970) (unpublished); Iliffe Sci. Tech. Publ. 339 (1971).

    Google Scholar 

  48. M. Suenagaand, W. B. Sampson, Applied Phys. Letters, Vole 18, No. 12, 584 (1971).

    Article  Google Scholar 

  49. M. Suenaga and W. B. Sampson, presented at the 1972 Applied Superconductivity Conference, Annapolis, MD, May 1–3 (1972).

    Google Scholar 

  50. J. E. Crow and M. Suenaga, presented at the 1972 Applied Superconductivity Conference, Annapolis, MD, May 1–3 (1972).

    Google Scholar 

  51. Earl R. Parker, presented at the Annual Review Symposium of the United States Atomic Energy Commission, Inorganic Materials Research Division, Lawrence Berkeley Laboratory, Berkeley, CA, Feb. 3 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this paper

Cite this paper

Bowman, M.G. (1972). Chemical Aspects of New Superconducting Materials and Fabrication Techniques. In: Gruen, D.M. (eds) The Chemistry of Fusion Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4595-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4595-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4597-8

  • Online ISBN: 978-1-4613-4595-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics