Skip to main content

A Review of the Chemical, Physical, and Thermal Properties of Lithium that are Related to its Use in Fusion Reactors

  • Conference paper

Abstract

The successful use of any material as a blanket or as a coolant in fusion reactors will depend on a very large number of properties, thermodynamic, physical, chemical, and otherwise. Herein, we review a number of important properties of lithium that pertain to its use as a blanket and/or coolant in a D-T fusion power plant. Among the topics we cover are natural abundance, thermodynamic and transport properties, characterization, analysis, control of species in lithium, and corrosion of materials (including electronic insulators) by molten lithium. Throughout this review we have attempted to indicate the importance of the individual properties as they would affect the overall design considerations of an operating reactor and to point out areas where information is lacking and where additional work is needed.

Work performed under the auspices of the United States Atomic Energy Commission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. C. Gough and B. J. Eastlund, Scientific American, 224, 50 (1971).

    Article  MathSciNet  Google Scholar 

  2. D. J. Rose, Science, 172, 797 (1971).

    Article  Google Scholar 

  3. J. L. Tuck, Nature 233, 593 (1971).

    Article  Google Scholar 

  4. R. G. Mills, IEEE Spectrum, November, 24 (1971).

    Google Scholar 

  5. Proceedings of the British Nuclear Energy Society Conference on Nuclear Fusion Reactors, UKAEA Culham Laboratory, September 17–19, 1969, Published by the British Nuclear Energy Society, 1970.

    Google Scholar 

  6. D. Steiner, “A Review of the ORNL Fusion Feasibility Studies”, USAEC Report ORNL-TM-3222 (December 1970).

    Google Scholar 

  7. M. J. Lubin and A. P. Fraas, Scientific American, 224, 21 (1971).

    Google Scholar 

  8. J. E. Draley, B. R. T. Frost, D. M. Gruen, M. Kaminsky, and V. A. Maroni, “An Assessment of Some Materials Problems for Fusion Reactors,” in Proc. 1971 Intersociety Energy Conversion Engineering Conf., Society of Automotive Engineers, New York, N.Y., (1971), pp. 1065–1075.

    Google Scholar 

  9. E. F. Johnson, Reference 5, p. 441.

    Google Scholar 

  10. W. R. Grimes and S. Cantor, “Molten Salts as Blanket Fluids in Controlled Fusion Reactors”, presented as a Chapter in this Volume.

    Google Scholar 

  11. J. O. Cowles and A. D. Pasternak, “Lithium Properties Related to Use as a Nuclear Reactor Coolant” USAEC Report UCRL-50647 (April 1969).

    Google Scholar 

  12. D. Steiner, Nuclear Applications and Technology, 9 83 (1970).

    Google Scholar 

  13. J. D. Lee, Reference 5, p. 471.

    Google Scholar 

  14. S. Blow, J. S. Crocker, and B. O. Wade, Reference 5, p. 492.

    Google Scholar 

  15. A. P. Fraas, Reference 5, p. 1.

    Google Scholar 

  16. N. C. Christofilos, “Design for a High Power Density Astron Reactor”, USAEC Report UCRL-72957 (January 1971).

    Google Scholar 

  17. R. Hultgren, R. L. Orr, and K. K. Kelley, “Selected Values of Thermodynamic Properties of Metals and Alloys,” January 1970 Supplement, Inorganic Materials Research Division, Lawrence Radiation Laboratory (Berkeley), University of California.

    Google Scholar 

  18. A. Bernini and H. Cantoni, Nuovo Cimento, 8, 241 (1914).

    Article  Google Scholar 

  19. I. G. Dillon, P. A. Nelson, and S. B. Swanson, J. Chem. Phys., 44, 4229 (1966).

    Article  Google Scholar 

  20. T. B. Douglas, L. F. Epstein, J. L. Dever, and W. H. Howland, J. Am. Chem. SOC, 77, 2144 (1955).

    Article  Google Scholar 

  21. I. I. Novikov, V. A. Gruzdev, O. A. Kraev, A. A. Odintsov, and V. V. Roshchupkin, High Temperature, 7, 65 (1969).

    Google Scholar 

  22. E. I. Gol’tsova, High Temperature, 4, 348 (1966).

    Google Scholar 

  23. E. E. Shpil’rain, Yu. A. Soldatenko, K. A. Yakimovich, V. A. Fomin, V. A. Savchenko, A. M. Belova, D. N. Kagan, and I. F. Dvaniova, High Temperature 3, 870 (1965).

    Google Scholar 

  24. I. I. Novikov, Yu. S. Trelin, and T. A. Tsyganova, High Temperature, 1140 (1960).

    Google Scholar 

  25. A. D. Pasternak, Mater. Sci. Eng., 3 65 (1968/69).

    Google Scholar 

  26. V. M. Anisimov and L. D. Volyak, High Temperature, 7 340 (1969).

    Google Scholar 

  27. D. V. Rigney, S. M. Kapelner, and R. E. Cleary, “The Vapor Pressure of Lithium Between 1307 and 1806°K,” CANEL Report TIM-844 (September 1965).

    Google Scholar 

  28. J. Bohdansky and H. E. J. Schins, J. Phys. Chem., 71, 215 (1967).

    Article  Google Scholar 

  29. J. Bohdansky and H. E. J. Schins, J. Inorg. Nucl. Chem., 29. 2173 (1967).

    Article  Google Scholar 

  30. J. W. Taylor, Phil. Mag., 46, 867 (1955). 30b. P. Y. Achener, “Alkali Metals Evaluation ProgramQuarterly Progress Report,” Report AGN-8202 (November 1966), p. 12.

    Google Scholar 

  31. L. D. Volyak and Yu. P. Os’minin, Buss. J. Phys. Chem., 42, 524 (1968).

    Google Scholar 

  32. N. A. Kalakutskaya, High Temperature, 6, 436 (1968).

    Google Scholar 

  33. D. V. Rigney, S. M. Kapelner, and R. E. Cleary, “The Viscosity of Lithium,” CANEL Report TIM-849 (July 1965).

    Google Scholar 

  34. I. I. Novikov, A. N. Soloviev, E. M. Khabakhnasheva, V. A. Gruzdev, A. I. Pridantzev, and M. Ya. Vasenina, J. Nuclear Energy, 4, 387 (1957). 34b. E. N. de C. Andrade, Proc. Roy. Soc. London, 211, 12 (1952).

    Google Scholar 

  35. E. E. Shpil’rain, I. F. Krainova, High Temperature, 8, 1036 (1970).

    Google Scholar 

  36. J. W. Cooke, J. Chem. Phys., 40, 1902 (1964).

    Article  Google Scholar 

  37. M. N. Arnol’dov, M. N. Ivanovskii, V. I. Subbotin, and B. A. Shmatko, High Temperature, 5 723 (1967).

    Google Scholar 

  38. E. E. Shpil’rain and V. A. Savchenko, High Temperature, 6, 247 (1968).

    Google Scholar 

  39. D. V. Rigney, S. M. Kapelner, and R. E. Cleary, “The Electrical Resistivity of Lithium and Columbium-1 Zirconium Alloy to 1430°C,” CANEL Report TIM-854 (September 1965).

    Google Scholar 

  40. J. F. Freedman and W. D. Robertson, J. Chem. Phys., 34, 769 (1961).

    Article  Google Scholar 

  41. F. Tepper, J. Zelenak, F. Roehlich and V. May, “Thermophysical and Transport Properties of Liquid Metals,” Report AFML-TR-65-99 (May 1965).

    Google Scholar 

  42. M. A. Hoffman and G. A. Carlson, “Calculation Techniques for Estimating the Pressure Losses for Conducting Fluid Flows in Magnetic Fields,” USAEC Report UCRL-51010 (February 1971).

    Google Scholar 

  43. A. Ott and A. Lodding, Z. Naturfoschg., 20A 1578 (1965).

    Google Scholar 

  44. A. Ott and A. Lunden, Z. Naturforschg., 19A, 822 (1964). 44b. A. Lodding and A. Ott, Z. Naturforschg., 21A, 1344 (1966).

    Google Scholar 

  45. J. S. Murry and R. M. Cotts, J. Chem. Phys., 48, 4938 (1968).

    Article  Google Scholar 

  46. J. R. Stehn, M. D. Goldberg, B. A. Magurno, and R. Weiner-Chasman, “Neutron Cross Sections — Vol. I,” USAEC Report BNL-325 (May 1964).

    Google Scholar 

  47. E. Veleckis, “Physical Inorganic Chemistry Semiannual Report, July — December 1971,” USAEC Report ANL-7878 (March 1972), p. 1111.

    Google Scholar 

  48. L. L. Hill, Unpublished Ph.D. Thesis, University of Chicago (1938).

    Google Scholar 

  49. C. E. Messer, “A Survey Report on Lithium Hydride,” USAEC Report NYO-9470 (October 1960).

    Google Scholar 

  50. M. R. J. Perlow, Unpublished Ph.D. Thesis, University of Chicago (1941).

    Google Scholar 

  51. F. K. Heumann and O. N. Salmon, “The Lithium Hydride, Deuteride, and Tritide Systems,” USAEC Report KAPL 1667 (December 1956).

    Google Scholar 

  52. E. Veleckis and E. Van Deventer, “Physical Inorganic Chemistry Semiannual Report, January–June 1972,” USAEC Report ANL-7923 (in press).

    Google Scholar 

  53. C. G. Swain, E. C. Stivers, J. F. Reuwer, Jr., L. J. Schaad, J. Am. Chem. Soc, 80, 5885 (1958).

    Article  Google Scholar 

  54. C. E. Messer, E. B. Damon, P. C. Maybury, J. Mellor, and R. A. Seales, J. Phys. Chem., 62, 220 (1958).

    Article  Google Scholar 

  55. F. C. Chang, “A Study of Ternary Hydride Phases Formed by Reaction of LiH with Selected Metals,” Ph.D. Thesis, University of Denver (1968), University Microfilms, Inc. No. 68-17,837.

    Google Scholar 

  56. E. J. Cairns, C. E. Crouthamel, A. K. Fischer, M. S. Foster, J. C. Hesson, C. E. Johnson, H. Shimotake, and A. D. Tevebaugh, “Galvanic Cells with FusedSalt Electrolytes,” USAEC Report ANL-7316 (November 1967).

    Google Scholar 

  57. C. E. Johnson, R. R. Heinrich, and C. E. Crouthamel, J. Phys. Chem., 70, 242 (1966).

    Article  Google Scholar 

  58. J. A. Plambeck, J. P. Elder, and H. A. Laitinen, J. Electrochem. Soc., 113, 931 (1966).

    Article  Google Scholar 

  59. E. E. Hoffman, “Solubility of Nitrogen and Oxygen in Lithium and Methods of Lithium Purification,” in ASTM Special Technical Publication No. 272 (1960) p. 195. 59b. E. E. Hoffman, “Corrosion of Materials in Lithium at Elevated Temperatures,” USAEC Report ORNL-2674 (March 1959).

    Google Scholar 

  60. R. P. Eliott, Constitution of Binary Alloys-First Supplement, McGraw Hill, New York (1965), p. 219.

    Google Scholar 

  61. P. I. Fedorov and M. T. Su, Hua Hsueh Hsueh Pao (J. Chinese Chem. Soc.), 23, 30 (1957).

    Google Scholar 

  62. D. R. Secrist, “A Study of the Lithium-Boron-Carbon System,” USAEC Report KAPL-2182 (1962).

    Google Scholar 

  63. K. J. Kelly, E. W. Hobart, and R. G. Bjork, “Studies Concerning the Chemical States of Carbon, Nitrogen, and Oxygen in Alkali Metals,” Report CNLM-6337 (1965).

    Google Scholar 

  64. R. L. Eichelberger, R. L. McKisson, and B. G. Johnson, “Solubility of Refractory Metals and Alloys in Potassium and Lithium,” Report CR-1371 (1969).

    Google Scholar 

  65. W. Arbiter and S. Lazerus, “Purification of Lithium by Vacuum Distillation,” Report NDA-39 (1957).

    Google Scholar 

  66. B. D. Holt, Anal. Chem., 31, 51 (1959).

    Article  Google Scholar 

  67. D. R. Vissers, J. T. Holmes, and P. A. Nelson, Trans. Am. Nuol. Soc, 14, 610 (1971).

    Google Scholar 

  68. D. R. Vissers, Argonne National Laboratory (private communication).

    Google Scholar 

  69. P. W. Benjamin, C. D. Kemshall, and D. L. E. Smith, “A Technique for Measuring the Tritium Content of Small Samples of Irradiated Lithium Metal,” AWRE Report NR/A-2/62 (October 1962).

    Google Scholar 

  70. L. Burris, F. A. Cafasso, R. J. Meyer, M. H. Barsky, and H. S. Edwards, “Interim Methods for the Analysis of Sodium and Cover Gas,” USAEC Report ANL/ST-6 (1971) p. 77.

    Google Scholar 

  71. P. A. Nelson, Argonne National Laboratory (private communication).

    Google Scholar 

  72. L. P. Pepkowitz and W. C. Judd, Anal. Chem., 22, 1283 (1950).

    Article  Google Scholar 

  73. J. C. White, W. J. Ross, and R. Rowan, Anal. Chem., 26, 210 (1954).

    Article  Google Scholar 

  74. N. I. Sax and H. Steinmetz, “Determination of Oxygen in Lithium Metal,” USAEC Report ORNL-2570 (October 1958).

    Google Scholar 

  75. R. J. Jaworowski, J. R. Potts, and E. W. Hobart, Anal. Chem., 35, 1275 (1963).

    Article  Google Scholar 

  76. G. Goldberg, A. S. Meyer, and J. C. White, Jr., Anal. Chem., 32, 314 (1960).

    Article  Google Scholar 

  77. G. Goldberg, Anal. Chem., 34, 1343 (1962).

    Article  Google Scholar 

  78. Z. M. Turovtseva and N, F. Litvinova, Proceedings of the United Nations International Conference on the Peaceful Uses of Atomic Energy (2nd Geneva Conference), 28, 593 (1958).

    Google Scholar 

  79. J. C. Bate and G. W. Leddicote, Oak Ridge National Laboratory Analytical Chemistry Division Annual Progress Report, January–December 1957, USAEC Report ORNL-2453 (January 1958).

    Google Scholar 

  80. L. C. Bate, Nucleonics, 21, 72 (1963).

    Google Scholar 

  81. E. L. Steele and R. Lukens, Development of Neutron Activation Analysis Procedures for the Determination of Oxygen in Potassium, 1st and 2nd Quarterly Progress Reports, Report GA-4855 (January 1964).

    Google Scholar 

  82. J. Faraday and C. R. Bingham, “Determination of Oxygen, Carbon, and Nitrogen in Lithium and Lithium Hydride by Photon-Activation Analysis,” NRL Report PB-181071 (1962).

    Google Scholar 

  83. E. E. Konovalov, I. B. Dmitrieva, M. N. Arnol’dov, V. P. Emel’yanov, A. V. Milovidora, A. G. Karabash, and M. N. Ivanovskii, Zhurnal Analiticheskoi Khimii, 23, 1510 (1968).

    Google Scholar 

  84. R. F. Gahn, Anal. Chem., 41, 1303 (1969).

    Article  Google Scholar 

  85. G. P. Stavropoulos and F. A. Cafasso, Trans. Am. Nucl. Soc., 14, 621 (1971).

    Google Scholar 

  86. L. G. Hays and D. O’Connor, “A 2000°F Lithium Erosion and Component Performance Experiment,” NASA Report No. 32-1150 (1967).

    Google Scholar 

  87. W. A. Ross, E. T. Weber, B. R. Grundy, and E. Berkey, Trans Am. Nucl. Soc., 14, 621 (1971).

    Google Scholar 

  88. Zirconium Corporation of America (Zircoa).

    Google Scholar 

  89. T. W. Gilbert, A. S. Meyer, and J. C. White, Anal. Chem., 29, 1627 (1957).

    Article  Google Scholar 

  90. J. R. Potts and W. E. Hobart, “The Determination of Carbon in Lithium,” USAEC Report TID-7606 (1960).

    Google Scholar 

  91. J. M. McKee, W. H. Caplinger, and M. Kolodney, Nuol. Applications, 5, 236 (1968).

    Google Scholar 

  92. D. F. Anthrop, “Solubilities of Transition Metals in Liquid Alkali and Alkaline Earth Metals, Lanthanum, and Cerium: A Critical Review of Literature,” USAEC Report UCRL-50315 (1968).

    Google Scholar 

  93. N. I. Sax, N.Y. Chu, R. H. Miles, and R. W. Miles, “Determination of Nitrogen in Lithium,” USAEC Report NDA-38 (June 1957).

    Google Scholar 

  94. H. Leavenworth, R. E. Cleary, and W. D. Bratton, “Solubility of Structural Metals in Lithium,” Report PWAC-356 (1961).

    Google Scholar 

  95. H. Leavenworth, R. E. Cleary, and W. D. Bratton, Acta Met., 9, 519 (1961).

    Article  Google Scholar 

  96. Y. F. Bychkov, A. N. Rozanov, and V. B. Yakovelva, Atomnaya Energiya, 7 531 (1959).

    Google Scholar 

  97. R. F. Koenig, “Corrosion of Zirconia and Its Alloys in Liquid Metals,” USAEC Report KAPL-982 (1953).

    Google Scholar 

  98. R. E. Cleary, S. S. Blecherman, and J. E. Corliss, “Solubility of Refractory Metals in Lithium and Potassium,” PWAC Report TIM-850 (1965).

    Google Scholar 

  99. H. E. Evans and W. R. Watson, J. Nucl. Mater., 40, 195 (1971).

    Article  Google Scholar 

  100. D. S. Jesseman, G. D. Roben, A. L. Grunewald, W. L. Fleshman, K. Anderson, and V. P. Calkins, “Preliminary Investigation of Metallic Elements in Molten Lithium,” Report NEPA-1465 (1950).

    Google Scholar 

  101. J. R. DiStefano, “Corrosion of Refractory Metals by Lithium,” USAEC Report ORNL-3551 (1964).

    Google Scholar 

  102. R. L. Klueh, Corrosion by Liquid Metals, J. E. Draley and J. R. Weeks, eds., Plenum Press, New York (1970), p. 177.

    Google Scholar 

  103. M. S. Freed and K. J. Kelly, “Corrosion of Columbium Base and Other Structural Alloys in High Temperature Lithium,” CANEL Report PWAC-355.

    Google Scholar 

  104. J. F. Cunningham, “Resistance of Metallic Materials to Corrosion Attack by High-Temperature Lithium,” USAEC Report ORNL-CF-51-7-135 (1951).

    Google Scholar 

  105. J. A. DeMastry and N. M. Greenauer, “Investigation of High-Temperature Refractory Metals and Alloys for Thermionic Converters,” USAF Report BMI-AFPL-TR 65-29 (1965).

    Google Scholar 

  106. J. H. Devan, A. P. Litman, J. R. Distefano, and C. E. Sessions, “Lithium and Potassium Corrosion Studies with Refractory Metals,” in Alkali Metal Coolants, International Atomic Energy Agency, Vienna (1967), p. 675.

    Google Scholar 

  107. A. Romano, A. Fleitman, and C. Klamut, “Behavior of Refractory Metals and Alloys in Boiling Sodium and Other Boiling Alkali Metals,” in Proceedings of the Alkali Metal Coolants Symposium, International Atomic Energy Agency, Vienna (1967).

    Google Scholar 

  108. R. W. Harrison, “The Effects of Welding Atmosphere on the Lithium Corrosion of Refractory Alloys,” in Corrosion by Liquid Metals, J. E. Draley and J. R. Weeks, eds., Plenum Press, New York (1970), p. 217.

    Google Scholar 

  109. C. E. Sessions, “Effects of Oxygen, Heat Treatment, and Test Temperature on the Compatibility of Several Advanced Refractory Alloys with Lithium,” USAEC Report ORNL-4430 (April 1971).

    Google Scholar 

  110. D. Elliot, D. Cerini, and L. Hays “Liquid MHD Power Conversion,” Space Programs Summary No. 37-41, Vol. IV, Jet Propulsion Laboratory, Pasadena, California (June 1966).

    Google Scholar 

  111. M. L. Kyle and J. R. Pavlik, Development of High Energy Batteries for Electric Vehicles, Progress Report for the Period July 1970–June 1971, USAEC Report ANL-7888 (December 1971), p. 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this paper

Cite this paper

Cairns, E.J., Cafasso, F.A., Maroni, V.A. (1972). A Review of the Chemical, Physical, and Thermal Properties of Lithium that are Related to its Use in Fusion Reactors. In: Gruen, D.M. (eds) The Chemistry of Fusion Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4595-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4595-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4597-8

  • Online ISBN: 978-1-4613-4595-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics