Conformational Studies of Poly(Ethyl Acrylate-co-Acrylic Acid)

  • Susan P. Gasper
  • Julia S. Tan
Conference paper
Part of the Polymer Science and Technology book series (PST, volume 2)


In recent years, extensive complementary light-scattering and viscosity studies have been carried out by a number of workers for nonionic polymers (1–7) but very few for polyelectrolytes (8–10). Our present work concerns a systematic study of a poly(ethyl acrylate-co-acrylic acid), an interesting polyelectrolyte with both hydrophilic and hydrophobic groups. The copolymer contains ethyl acrylate and acrylic acid residues in a mole ratio of three to one, respectively (Figure 1). The weight fractions of each comonomer in the polymer were found to be constant over the entire molecular-weight range studied. The different monomer groups are also randomly distributed along each chain.


Ionic Strength Acrylic Acid Intrinsic Viscosity Conformational Transition Relative Fluorescence Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. C. Berry, J. Chem. Phys., 44, 4550 (1966)CrossRefGoogle Scholar
  2. G. C. Berry, ibid., 46, 1338 (1967).Google Scholar
  3. 2.
    T. Norisuye, K. Kawahara, A. Teramoto, and H. Fujita, J. Chem. Phys., 49 4330 (1968).CrossRefGoogle Scholar
  4. 3.
    K. Kawahara, T. Norisuye, and H. Fujita, J. Chem. Phys., 49, 4339 (1968).CrossRefGoogle Scholar
  5. 4.
    G. Tanaka, S. Imai, and H. Yamakawa, J. Chem. Phys., 52, 2639 (1970).CrossRefGoogle Scholar
  6. 5.
    K. Takashima, G. Tanaka, and H. Yamakawa, Polym. J., 2, 245 (1971).CrossRefGoogle Scholar
  7. 6.
    T. Kato, K. Miyaso, I. Noda, T. Fujimoto, and M. Nagasawa, Macromolecules, 3, 777 (1970).CrossRefGoogle Scholar
  8. 7.
    I. Noda, K. Mizutani, T. Kato. T. Fujimoto, and M. Nagasawa. Macromolecules, 3, 787 (1970).Google Scholar
  9. 8.
    A. Takahashi and M. Nagasawa, J. Amer. Chem. Soc., 86, 543 (1964).CrossRefGoogle Scholar
  10. 9.
    A. Takahashi, T. Kato, and M. Nagasawa, J. Phys. Chem., 71, 2001 (1967).CrossRefGoogle Scholar
  11. 10.
    I. Noda, T. Tsuge, and M. Nagasawa, J. Phys. Chem., 74, 710 (1970).CrossRefGoogle Scholar
  12. 11.
    J. S. Tan and S. P. Gasper, Bull. Amer. Phys. Soc., 17, 373 (1972); also submitted as Parts I and II to Macromolecules, (1972).Google Scholar
  13. 12.
    G. M. Edelman and W. 0. McClure, Acc. Chem. Res., 1, 65 (1968).CrossRefGoogle Scholar
  14. 13.
    A. Arnold and J. Overbeek, Rec. Trav. Chim., 69, 192 (1950).CrossRefGoogle Scholar
  15. 14.
    M. Nagasawa and A. Holtzer, J. Amer. Chem. Soc., 86, 538 (1964).CrossRefGoogle Scholar
  16. 15.
    T. N. Nebrasova, Ye. V. Anufriyeva, A. Yel’yashevich, and O. B. Ptitsyn, Vysokomol. Soyed., 7, 913 (1965).Google Scholar
  17. 16.
    M. Nagasawa, T. Murase, and K. Kondo, J. Phys. Chem., 69, 4005 (1965).CrossRefGoogle Scholar
  18. 17.
    A. Wada, J. Mol. Phys., 3, 409 (1960).CrossRefGoogle Scholar
  19. 18.
    D. S. Olander and A. H. Holtzer, J. Amer. Chem. Soc., 90, 4549 (1968).CrossRefGoogle Scholar
  20. 19.
    J. C. Leyte and M. Mandel, J. Polymer Sci., Part-A, 2, 1879 (1964).Google Scholar
  21. J. C. Leyte and M. Mandel, Makromol. Chem., 80, 141 (1964).CrossRefGoogle Scholar
  22. 20.
    B. H. Zimm and S. A. Rice, J. Mol. Phys., 3, 391 (1960).CrossRefGoogle Scholar
  23. 21.
    T. N. Nebrasova, A. G. Gabrielyan, and O. B, Ptitsyn, Vysokomol. Soyed., A10, 297 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Susan P. Gasper
    • 1
  • Julia S. Tan
    • 1
  1. 1.Eastman Kodak CompanyRochesterUSA

Personalised recommendations