Skip to main content

The Use of Autoradiographic Techniques for the Identification and Mapping of Transmitter-Specific Neurones in CNS

  • Chapter
New Concepts in Neurotransmitter Regulation

Abstract

We now know of at least six different transmitter substances used in synaptic transmission in the mammalian CNS, In most cases, however, only fragmentary information is available on the distribution of the various categories of transmitter-specific neurone in the CNS. Thus, for example, while gamma-aminobutyric acid (GABA) is thought to be an important inhibitory transmitter substance in many regions of the CNS (for reviews see Curtis and Johnston, 1970; Hebb, 1970; Krnjević, 1970; Iversen, 1972), it is by no means clear precisely which inhibitory neurones use GABA as transmitter, nor indeed whether any inhibitory neurones using transmitters other than GABA exist in various regions of the brain. Only in the case of the monoamine transmitters, noradrenaline (NA), dopamine (DA) and 5-hydroxytryptamine (5-HT) is there any detailed information on the distribution of neuronal pathways involving specific transmitters. This information has become available during the past ten years, following the development of histochemical techniques which allow direct visualization of formaldehyde condensation derivatives of the monoamines in the fluorescence microscope (Carlsson, Falck and Hillarp, 1962; Dahlström and Fuxe, 1965; Fuxe, 1965).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G.K. and Bloom, F.E. 1966. Electron microscopic autoradiography of rat hypothalamus after intraventricular 3H-norepinephrine. Science 153: 308–310.

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian, G.K. and Bloom, F.E. 1967 a. Electron microscopic localization of tritiated norepinephrine in rat brain: effect of drugs. J. Pharmac. Exp. Ther. 156: 407–416.

    CAS  Google Scholar 

  • Aghajanian, G.K. and Bloom, F.E. 1967 b. Localization of tritiated serotonin in rat brain by electron microscopic autoradiography. J. Pharmacol. Exp. Ther. 156: 23–30.

    PubMed  CAS  Google Scholar 

  • Barnard, E.A., Wieckowski, J. and Chiu, T.H. 1971. Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions. Nature 234: 207–209.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F.E., Hoffer, B.J., Siggins, G.R., Barker, J.L. and Nicoll, R.A. 1972. Effects of serotonin on central neurones: micro-iontophoretic administration. Fed. Proc. 31: 97–106.

    PubMed  CAS  Google Scholar 

  • Bloom, F.E. and Iversen, L.L. 1971. Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature 229: 628–630.

    Article  PubMed  CAS  Google Scholar 

  • Bodian, D. 1970. An electron microscopic characterization of classes of synaptic vesicles by means of controlled aldehyde fixation. J. Cell. Biol. 44: 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Bowery, N.G. and Brown, D.A. 1972. Observations on 3H-γ-amino-butyric acid accumulation and efflux in isolated sympathetic ganglia. J. Physiol. (Lond.), 218: 32. (and Nature NB 238: 89–91)

    Google Scholar 

  • Brunn, A. and Ehinger, R. 1972. Uptake of the putative neurotransmitter, glycine into the rabbit retina. Invest. Ophthal. (in press).

    Google Scholar 

  • Budd, G.C. and Salpeter, M.M. 1969. The distribution of labelled norepinephrine within sympathetic nerve terminals studied with electron microscope radioautography. J. Cell Biol. 41: 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Falck, B. and Hillarp, N.A. 1962. Cellular localization of brain monoamines. Acta. physiol. scand. 56, Suppl. 196

    Google Scholar 

  • Clark, W.G., Vivonia, C.A. and Baxter, C.F. 1968. Accurate freehand injection into the lateral ventricle of the conscious mouse. J. Appl. Physiol. 25:319–321.

    PubMed  CAS  Google Scholar 

  • Cowan, W.M., Gottlieb, D.I., Hendrickson, A.E., Price, J.L. and Woolsey, T.A. 1972. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 37: 21–51.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T. and Snyder, S.H. 1969. Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J. Pharmac. Exp. Ther. 170: 221–231.

    CAS  Google Scholar 

  • Csillik, B. and Knyihar, E. 1970. Distribution of 14C-thiosemicarbazide in the rat brain: an attempt to localize sites of γ-aminobutyric acid production. Nature 225: 562–563.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Johnston, G.A.R. 1970. Amino acid transmitters. In: Handbook of Neurochemistry, Vol. 4 (Ed. Lajtha, A.). New York: Plenum Press, pp. 115–134.

    Google Scholar 

  • Dahlström, A. and Fuxe, K. 1965. Evidence for the existence of monoamine neurons in the central nervous system. Acta physiol. scand., 65, Suppl. 247.

    Google Scholar 

  • Descarries, L. and Droz, B. 1970. Intraneuronal distribution of exogenous norepinephrine in the central nervous system of the rat. J. Cell. Biol. 44: 385–399.

    Article  PubMed  CAS  Google Scholar 

  • Descarries, L. and Havrankova, J. 1970. Catécholamines endogènes marquées dans le systeme nerveux central. Etude radioautographique.apprès L-3,4-dihydroxyphenylalanine tritée (DOPA-3H). C.R. Acad. Se. Paris 271: 2392–2395.

    CAS  Google Scholar 

  • Devine, C.E. and Simpson, F.O. 1968. Localization of tritiated norepinephrine in vascular sympathetic axons of the rat intestine and mesentery by electron microscope radioautography J. Cell. Biol. 38: 184–192.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B. 1970, Autoradiographic identification of rabbit retinal neurons that take up GABA. Experientia 26: 1063.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B. 1972. Cellular localization of the uptake of some amino acids into the rabbit retina (in press).

    Google Scholar 

  • Ehinger, B. and Falck, B. 1971. Autoradiography of some suspected neurotransmitter substances: GABA, glycine, glutamic acid, histamine, dopamine and L-DOPA. Brain Res. 33: 157–172.

    Article  PubMed  CAS  Google Scholar 

  • Esterhuizen, A.C., Graham, J.D.P., Lever, J.D. and Spriggs, T.L.B. 1968. Catecholamines and acetylcholinesterase distribution in relation to noradrenaline release. An enzyme histochemical and autoradiographic study on the innervation of the cat nictitating muscle. Brit. J. Pharmac. 32: 46–56.

    CAS  Google Scholar 

  • Fambrough, D.M. and Hartzell, H.C. 1972. Acetylcholine receptors: number and distribution at neuromuscular junctions in rat diaphragm. Science 176: 189–191.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F. 1968. The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain. Biochem. J. 106: 401–412.

    PubMed  CAS  Google Scholar 

  • Fonnum, F., Storm-Mathisen, J. and Walberg, F. 1970. Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res. 20: 259–275.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K. 1965. Evidence for the existence of monoamine neurons in the central nervous system. III. The monoamine nerve terminal. Z. Zellforsch. 65: 573–596.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K., Hokfelt, T., Ritzen, M. and Ungerstedt, U. 1968. Studies on uptake of intraventricularly administered tritiated noradrenaline and 5-hydroxytryptamine with combined fluorescence histochemical and autoradiographic techniques. Histochemie 16: 186–194.

    PubMed  CAS  Google Scholar 

  • Graham, J.D.P., Lever, J.D. and Spriggs, T.L.B. 1968. An examination of adrenergic axons around pancreatic arterioles of the cat for the presence of acetylcholinesterase by high resolution autoradiographic and histochemical methods. Brit. J. Pharmac. 33: 15–20.

    CAS  Google Scholar 

  • Green, A.K., Snyder, S.H. and Iversen, L.L. 1969. Separation of catecholamine storing synaptosomes in different regions of rat brain. J. Pharmac. Exp. Ther. 168: 164–271.

    Google Scholar 

  • Hebb, C. 1970. CNS at the cellular level: identity of transmitter agents. Ann. Rev. Physiol. 23: 165–192.

    Article  Google Scholar 

  • Hespe, W., Roberts, S.E. and Prins, H. 1969. Autoradiographic investigation of the distribution of 14C-GABA in tissues of normal and amino-oxyacetic acid-treated mice. Brain. Res. 14: 663–671.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt, T. 1965. In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z. Zellforsch. 91: 1–74.

    Article  Google Scholar 

  • Hökfelt, T. and Ljungdahl, A. 1970. Cellular localization of labelled gamma-aminobutyric acid (3H-GABA) in rat cerebellar cortex: an autoradiographic study. Brain Res. 22: 391–396.

    Article  PubMed  Google Scholar 

  • Hökfelt, T. and Ljungdahl, A. 1971 a. Light and electron microscopic autoradiography on spinal cord slices after incubation with labelled glycine. Brain Res. 23: 189–194.

    Article  Google Scholar 

  • Hökfelt, T. and Ljungdahl, A. 1971 b. Uptake of 3H-noradrenaline and γ-3H-aminobutyric acid in isolated tissues of rat: an autoradiographic and fluorescence microscopic study. Progress in Brain Res. 34: 87–102.

    Article  Google Scholar 

  • Hökfelt, T. and Ljungdahl, A. 1972. Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labeled gamma-aminobutyric acid (3H-GABA). Exp. Brain Res. 14: 354–362.

    Article  PubMed  Google Scholar 

  • Ishii, T. and Friede, R.L. 1967. Distribution of a catecholamine-binding mechanism in rat brain. Histochemie 9: 126–135.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, T. and Friede, R.L. 1968. Tissue binding of tritiated norepinephrine in pigmented nuclei of human brain. Amer. J. Anat. 122: 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M. and Yoshida, M. 1966. The origin of cerebellar-induced inhibition of Deiter’s neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potentials. Exp. Brain Res. 2: 330–349.

    PubMed  CAS  Google Scholar 

  • Iversen, L.L. 1967. The Uptake and Storage of Noradrenaline in Sympathetic Nerves. London: Cambridge University Press.

    Google Scholar 

  • Iversen, L.L. 1970. Neuronal uptake processes for Amines and Amino Acid. In: Adv. Biochem. Psychopharmac. Vol. 2. New York: Raven Press, pp. 109–132.

    Google Scholar 

  • Iversen, L.L. 1971. Role of transmitter uptake mechanisms in synaptic neurotransmission. Brit. J. Pharmac. 41: 571–591.

    CAS  Google Scholar 

  • Iversen, L.L. 1972. The uptake, storage, release and metabolism of GABA in inhibitory nerves. In: Perspectives in Neuropharmacology (Ed.,Snyder, S.), New York: Oxford University Press, Inc., pp. 75–111.

    Google Scholar 

  • Iversen, L.L. and Bloom, F.E. 1972. Studies of the uptake of 3H-GABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 41: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L. and Johnston, G.A.R. 1971. GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J. Neurochem. 18:1939–1950.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L. and Neal, M.J. 1968. The uptake of 3H-GABA by slices of rat cerebral cortex. J. Neurochem. 15: 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L. and Snyder, S.H. 1968. Synaptosomes: different populations storing catecholamines and gamma-aminobutyric acid in homogenates of rat brain. Nature 220: 796–798.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L. and Uretsky, N.J. 1971. Biochemical effects of 6-hydroxydopamine on catecholamine-containing neurones in the rat brain. In: 6-Hydroxydopamine and Catecholamine Neurones (Eds., Malmfors, T. and Thoenen, H.), Amsterdam: North Holland Press.

    Google Scholar 

  • Johnson, J.L. 1972. Glutamic acid as a synaptic transmitter in the nervous system, a review. Brain Res. 37: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G.A.R. and Iversen, L.L. 1971. Glycine uptake in rat central nervous system slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex. J. Neurochem. 18: 1951–1961.

    Article  PubMed  CAS  Google Scholar 

  • Kasa, P. 1971. Ultrastruetural localization of choline acetyltransferase and acetylcholinesterase in central and peripheral nervous tissue. Progr. Brain Res. 37: 337–344.

    Article  Google Scholar 

  • Kramer, S.G., Potts, A.M. and Mangnall, Y. 1971. Dopamine: a retinal neurotransmitter II. Autoradiographic localization of 3H-DOPAMINE in the retina. Invest. Ophthalm. 10: 617–624.

    CAS  Google Scholar 

  • Krnjević, K. 1970. Glutamate and γ-aminobutyric acid in brain. Nature 228: 119–124.

    Article  PubMed  Google Scholar 

  • Krnjević, K and Silver, A. 1965. A histochemical study of cholinergic fibres in the cerebral cortex. J. Anat. 99: 711–759.

    PubMed  Google Scholar 

  • Lam, D.M.K. and Steinman, L. 1971. The uptake of γ-3H-aminobutyric acid in the goldfish retina. Proc. Nat. Acad. Sci. USA 68: 2777–2781.

    Article  PubMed  CAS  Google Scholar 

  • Lenn, N.J. 1967. Localization of uptake of tritiated norepinephrine by rat brain in vivo and in vitro using electron microscopic autoradiography. Amer. J. Anat. 120: 377–390.

    Article  Google Scholar 

  • Lewis, P.R. and Shute, C.C.D. 1966. The distribution of cholinesterase in cholinergic neurons demonstrated with the electron microscope. J. Cell. Sci. 1: 381–390.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, A., Hokfelt, T., Jonsson, G. and Sachs, C. 1971. Autoradiographic demonstration of uptake and accumulation of 3H-6-hydroxydopamine in adrenergic nerves. Experientia 27: 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Logan, W.J. and Snyder, S.H. 1971. Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature 234: 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A.I. and Dennison, M.E. 1971. Autoradiographic localization of tritiated glycine at “flat-vesicle synapses in spinal cord. Brain Res. 32: 196–197.

    Article  Google Scholar 

  • McGeer, P.L., McGeer, E.G., Wada, J.A. and Jung, E. 1971. Effects of globus pallidus lesions and Parkinson’s disease on brain glutamic acid decarboxylase. Brain Res. 32: 425–431.

    Article  PubMed  CAS  Google Scholar 

  • Neal, M.J. 1971. The uptake of 14C-glycine by slices of mammalian spinal cord. J. Physiol. (Lond.), 215: 103–118.

    CAS  Google Scholar 

  • Neal, M.J. 1972. The uptake of 3H-γ-aminobutyric acid by the retina. J. Physiol. (Lond.) (in press).

    Google Scholar 

  • Neal, M.J. and Iversen, L.L. 1969. Subcellular distribution of endogenous and 3H-GABA in rat cortex. Neurochem. 16: 1245–1252.

    Article  CAS  Google Scholar 

  • Neal, M.J. and Iversen, L.L. 1972. Autoradiographic localization of 3H-GABA in rat retina. Nature, New Biology 235: 217–218.

    Article  CAS  Google Scholar 

  • Neal, M.J. and Pickles, H. 1969. Uptake of 14C-glycine by rat spinal cord. Nature 223: 679–680.

    Article  Google Scholar 

  • Obata, K. and Takeda, K. 1969. Release of γ-aminobutyric acid into the fourth ventricle induced by stimulation of the cat’s cerebellum. J. Neurochem. 16: 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Obata, K., Ito, M., Ochi, R. and Sato, N. 1967. Pharmacological properties of the postsynaptic inhibition by Purkinje cells axons and the action of γ-aminobutyric acid on Deiter’s neurones. Exp. Brain Res. 4: 43–57.

    Article  PubMed  CAS  Google Scholar 

  • Orkand, P.M. and Kravitz, E.A. 1971. Localization of the sites of γ-aminobutyric acid (GABA) uptake in lobster nerve-muscle preparations. J. Cell. Biol. 49: 75–89.

    Article  PubMed  CAS  Google Scholar 

  • Otsuka, M., Obata, K., Miyata, Y. and Tanaka, Y. 1971. Measurement of γ-aminobutyric acid in isolated nerve cells of cat central nervous system. J. Neurochem. 18: 287–295.

    Article  PubMed  CAS  Google Scholar 

  • Salpeter, M.M. and Bachmann, L. 1964. Autoradiography with the electron microscope. J. Cell. Biol. 22: 469–482.

    Article  PubMed  CAS  Google Scholar 

  • Salpeter, M.M. and Faeder, I.R. 1971. The role of sheath cells in glutamate uptake by insect nerve muscle preparations. Prog. Brain Res. 34: 104–114.

    Google Scholar 

  • Schon, F. and Iversen, L.L. 1972. Selective accumulation of 3H-GABA by stellate cells in rat cerebellar cortex in vivo. Brain Res. 42.

    Google Scholar 

  • Shaskan, E.A. and Snyder, S.H. 1970. Kinetics of serotonin uptake into slices from different regions of rat brain. J. Pharmac. Exp. Ther. 175: 404–418.

    CAS  Google Scholar 

  • Sims, K.L., Weitsen, H.A. and Bloom, F.E. 1971. Histochemical localization of brain succinic semialdehyde dehydrogenase- a γ-aminobutyric acid degradative enzyme. J. Histochem. Cytochem. 19: 405–415.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J. and Fonnum, F. 1971. Quantitative histochemistry of glutamate decarboxylase in the rat hippocampal region. J. Neurochem. 18: 1105–1111.

    Article  PubMed  CAS  Google Scholar 

  • Uchizono, K. 1965. Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207: 642–643.

    Article  PubMed  CAS  Google Scholar 

  • van Gelder, M.M. 1965. A comparison of γ-aminobutyric acid metabolism in rabbit and mouse nervous tissue. J. Neurochem. 12: 239–244.

    Article  Google Scholar 

  • van Gelder, M.M. 1967. A possible enzyme barrier for γ-aminobutyric acid in the central nervous system. Prog. Brain Res. 29: 259–268.

    Google Scholar 

  • Weinstein, H., Varon, S., Muhlemann, D.R. and Roberts, E. 1965. A carrier-mediated transfer model for the accumulation of 14C-γ-aminobutyric acid by subcellular brain particles. Biochem. Pharmac. 14: 273–288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Iversen, L.L., Schon, F.E. (1973). The Use of Autoradiographic Techniques for the Identification and Mapping of Transmitter-Specific Neurones in CNS. In: Mandell, A.J. (eds) New Concepts in Neurotransmitter Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4574-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4574-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4576-3

  • Online ISBN: 978-1-4613-4574-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics