Circadian Rhythms in Insects

  • Janet E. Harker

Abstract

Extensive studies have been made of insect circadian rhythms, and have contributed largely to our knowledge of those basic characteristics which are common to such rhythms in all animals. Laboratory studies have, in the main, been concerned with defining these characteristics and most recently the majority have been concerned with the exploration of the basic controlling system. Running alongside these experimental studies, but on the whole parallel with, rather than converging upon them, have been the even more extensive studies made in the natural environment.

Keywords

Sugar Migration Sucrose Hydrate Hydrocarbon 

References

  1. 1.
    J. E. Harker, Diurnal rhythms and homeostatic mechanisms. Symp. Soc. Exp. Biol, 18, 283–300 (1964).PubMedGoogle Scholar
  2. 2.
    J. E. Harker, Control of diurnal rhythms of activity in Periplaneta Americana L., Nature, Lond., 175, 733 (1955).CrossRefGoogle Scholar
  3. 3.
    J. E. Harker, Factors controlling the diurnal rhythm of activity of Periplaneta americana L., J. exp. biol., 33, 224–234 (1956).Google Scholar
  4. 4.
    J. E. Harker, The effect of perturbations in the environmental cycle on the diurnal rhythm of activity of Periplaneta americana L. J. exp. biol., 37, 154–163 (1960).Google Scholar
  5. 5.
    J. E. Harker, Internal factors controlling the suboesophageal ganglion neuro secretory cycle in Periplaneta americana L. J. exp. Biol. 37, 164–170 (1960).Google Scholar
  6. 6.
    J. L. Cloudsley-Thompson, Studies in diurnal rhythms VI. Ann. Mag. Nat. Hist., 9, 305–309 (1956).Google Scholar
  7. 7.
    D. L. Gunn, The daily rhythm of activity of the cockroach, Blatta orientalis. J. exp. Biol. 17, 267–277 (1940).Google Scholar
  8. 8.
    J. Brady, Control of the circadian rhythm of activity in the cockroach. I. The role of the corpora cardiaca, brain and stress. J. exp. Biol., 47, 153–163 (1967).PubMedGoogle Scholar
  9. 9.
    J. Brady, Control of the circadian rhythms of activity in the cockroach. II. The role of the sub-oesophageal ganglion and ventral nerve cord. J. exp. Biol. 47, 165–178 (1967).PubMedGoogle Scholar
  10. 10.
    S. K. Roberts, Circadian activity rhythms in cockroaches. I. The free-running rhythm in steady-state. J. cell. comp. Physiol., 55, 99–110 (1960).PubMedCrossRefGoogle Scholar
  11. 11.
    S. K. Roberts, Circadian activity rhythms in cockroaches. II. Entrainment and phase shifting. J. cell comp. Physiol. 59, 175–186 (1962).CrossRefGoogle Scholar
  12. 12.
    J. N. Nowosielski and R. L. Patton, Studies on circadian rhythm of the house cricket, Gryllus domesticus L. J. Insect Physiol, 9, 401–410 (1963).CrossRefGoogle Scholar
  13. 13.
    M. Lohmann, Der Einfuss von Beleuchtungsstärke und Temperatur auf die tagesperiodische Laufaktivität des Mehlkäfers Tenebrio molitor L. Z. vergl. Physiol., 49, 341–389 (1964).CrossRefGoogle Scholar
  14. 14.
    J. E. Harker, In discussion J. L. Cloudsley-Thompson, Adaptive functions of circadian rhythms. Cold Spring Harb. Symp. Quant. Biol, 25, 354 (1960).Google Scholar
  15. 15.
    J. D. Palmer, Ä persistent, light-preference rhythm in the fiddler crab, Uca pugnax and its possible adaptive significance. Am. Nat., 98, 431–434 (1964).CrossRefGoogle Scholar
  16. 16.
    J. Aschoff, U. Saint-Paul and R. Wever, Circadiane Periodik von Finkenvögeln unter dem Einfluss eines Selbstgewählten Licht-Dunkel-Wechsels. Z. vergl Physiol. 58, 304–321 (1968).CrossRefGoogle Scholar
  17. 17.
    G. R. Lipton and D. J. Sutherland, Activity rhythms in the American cockroach, Periplaneta americana. J. Insect Physiol, 16, 1555–1566 (1970).CrossRefGoogle Scholar
  18. 18.
    J. E. Harker, Diurnal rhythms in the animal kingdom. Biol. Rev., 33, 1–52 (1958).CrossRefGoogle Scholar
  19. 19.
    J. L. Kavanau, Compulsory regime and control of environment in animal behaviour. I. Wheel running. Behaviour. 20, 251–281 (1963).CrossRefGoogle Scholar
  20. 20.
    M. Lohmann, Phase dependent changes of circadian frequency after light steps. Nature, Lond., 213, 196–197 (1967).CrossRefGoogle Scholar
  21. 21.
    J. E. Harker, The Physiology of Diurnal Rhythms. Cambridge Univ. Press (1964).Google Scholar
  22. 22.
    U. Wobus, Der Einfluss der Lichtintensität auf die Resynchronisation der circadian en Laufaktivität der Schabe Blaberus craniifer Burm. Z. vergl Physiol. 52, 276 (1966).CrossRefGoogle Scholar
  23. 23.
    U. Wobus, Der Einfluss der Lichtintensität auf die circadiane Laufaktivität der Schabe Blaberus craniifer Burm. Biol. Zentr., 85, 305–323 (1966).Google Scholar
  24. 24.
    P. R. Lewis and M. C. Lobban, Dissociation of diurnal rhythms in human subjects living on abnormal time routines. Q. J. exp. Physiol. 42, 3 71–386 (1957).Google Scholar
  25. 25.
    H. Warnecke, Vergleichende Untersuchungen zur tagesperiodischen Aktivität von drei Geotrupes—Arten. Z. Tierpsychol., 23, 513–526 (1966).PubMedCrossRefGoogle Scholar
  26. 26.
    E. Bünning, Zur Analyse des Zeitsinnes bei Periplaneta americana Z. Naturforsch., 14B, 1–4 (1959).Google Scholar
  27. 27.
    D. K. Edwards, Activity rhythms of Lepidopterous defoliators. II. Halisidota argentata Pack. (Arctiidae) and Nepytia phantasmaria Stkr. (Geometridae). Canad. J. Zool. 42, 939–958 (1964).CrossRefGoogle Scholar
  28. 28.
    F. S. Bodenheimer and H. J. Klein, Über die Temperaturabhängigkeiten von Insekten. Z. vergl. Physiol. 11, 345–385 (1930).Google Scholar
  29. 29.
    K. R. Norris, Daily patterns of flight activity of blowflies in the Canberra district as indicated by trap catches. Australian J. Zool., 14, 835–854 (1966).Google Scholar
  30. 30.
    T. Lewis and L. R. Taylor, Diurnal periodicity of flight by insects. Trans. R. ent. Soc. Lond., 116, 393–479 (1964).CrossRefGoogle Scholar
  31. 31.
    C. B. Williams, The times of activity of certain nocturnal insects, chiefly Lepidoptera, as indicated by a light trap. Trans. R. ent. Soc. Lond., 83, 523–562 (1935).CrossRefGoogle Scholar
  32. 32.
    C. B. Williams, An analysis of four year captures of insects in a light trap. Trans. R. ent. Soc. Lond., 89, 79–131 (1939).CrossRefGoogle Scholar
  33. 33.
    C. G. Johnson, L. R. Taylor and E. Haine, The analysis and reconstruction of diurnal flight curves in alienicolae of Aphis fabae Scop. Annal. appl. Biol., 45, 682–701 (1957).CrossRefGoogle Scholar
  34. 34.
    C. G. Johnson and L. R. Taylor, Periodism and energy summation with special reference to flight rhythms in aphids. J. exp. Biol. 34, 209–221 (1957).Google Scholar
  35. 35.
    E. Haine, Periodicity in aphid moulting and reproduction in constant temperature and light. Z. angew. Ent., 40. 99–124 (1957).Google Scholar
  36. 36.
    N. W. and E. A. Timofeeff-Ressovsky, Populations-generische Versuche an Drosophila. Z.f. indukt. Abstamm.- Verebungsl., 79, 28 (1940).CrossRefGoogle Scholar
  37. 37.
    T. Dobzhansky and C. Epling, Contributions to the genetics, taxonomy and ecology of Drosophila pseudo-obscura and its relatives. Publ. Carneg. Instn., 544, 1–46 (1944).Google Scholar
  38. 38.
    C. Pavan, T. Dobzhansky and H. Burla, Diurnal behaviour of some Neotropical species of Drosophila. Ecology. 31, 36–43 (1950).CrossRefGoogle Scholar
  39. 39.
    V. R. D. Dyson-Hudson, The daily activity rhythm of Drosophila subobscura and D. obscura. Ecology. 37, 562–567 (1956).CrossRefGoogle Scholar
  40. 40.
    D. F. Mitchell and C. Epling, The diurnal periodicity of Drosophila pseudoobscura in Southern California, Ecology, 32, 696–708 (1951).CrossRefGoogle Scholar
  41. 41.
    L. R. Taylor and H. Kalmus, Dawn and dusk flight of Drosophila subobscura, Nature, Lond., 174, 221 (1954).CrossRefGoogle Scholar
  42. 42.
    K. J. Connolly, Locomotor activity in Drosophila as a function of food deprivation. Nature, Lond., 209, 224 (1966).CrossRefGoogle Scholar
  43. 43.
    S. K. Roberts, “Clock” controlled activity rhythms in the fruit fly. Science. 124, 172 (1956).PubMedCrossRefGoogle Scholar
  44. 44.
    P. S. Corbet, The role of rhythms in insect behaviour, in: Insect Behaviour.pp. 13–28, Haskell (ed.). R. Ent. Soc. Sump. (1966).Google Scholar
  45. 45.
    G. A. Lancaster and A. J. Haddow, Further studies on the nocturnal activity of Tabanidae in the vicinity of Entebbe, Uganda. Proc. R. ent. Soc. Lond. (A). 42, 39–48 (1967).Google Scholar
  46. 46.
    G. Williams, Seasonal and diurnal activity of Carabiidae, with particular reference to Nebria, Notiophilus and Feronia. J. Anim. Ecol., 28, 309–330 (1959).CrossRefGoogle Scholar
  47. 47.
    S. Mori, Population effect on the daily periodic emergence ofDrosophila. Mem. Coll. Sci. Kyoto (B), 25, 49–55 (1954).Google Scholar
  48. 48.
    A. J. Haddow, I. H. H. Yarrow, G. A. Lancaster and P. S. Corbet, Nocturnal flight cycle in the males of African doryline ants (Hymenoptera: Formicidae), Proc. R. ent. Soc. Lond. 41, 103–106 (1966).Google Scholar
  49. 49.
    D. K. Edwards, Laboratory determination of the daily flight times of separate sexes of some moths in naturally changing light. Canad. J. Zool., 40, 511–530 (1962).CrossRefGoogle Scholar
  50. 50.
    W. Ohsawa, K. Matutani, H. Tukuda, S. Mori, D. Miyadi, S. Yanagisima and Y. Sato, Sexual properties of the daily rhythmical activity in Drosophila melanogaster. Physiol Ecol., 5, 26–45 (1942).Google Scholar
  51. 51.
    H. Caspers, Rhythmische Erscheinungen in der Fortpflanzung von Clunio marinus (Dipt. Chiron.) und das Problem der lunaren Periodizität bei Organismen. Arch. Hydrobiol. Suppl. 18, 415–494 (1951).Google Scholar
  52. 52.
    E. T. Nielsen and J. S. Haeger, Pupation and emergence in Aedes taeniorhynchus (Weid.). Bull ent. Res., 45, 757–768 (1954).CrossRefGoogle Scholar
  53. 53.
    H. F. Barnes, On some factors governing the emergence of gall midges (Cecidomyidae). Proc. zool Soc. Lond., 381–393 (1930).Google Scholar
  54. 54.
    H. Eidmann, Über rhythmische Erscheinungen bei der Stabheuschrecke Carausius morosus Br. Z. vergl. Physiol., 38, 370–390 (1956).CrossRefGoogle Scholar
  55. 55.
    F. Steiniger, Die Erscheinungen der Katalepsie bei Stabheuschrecken und Wasserläufern. Z. morph. Ökol Tiere. 26, 591–594 (1933).CrossRefGoogle Scholar
  56. 56.
    P. S. Corbet, The life-history of the emperor dragonfly, Anax imperator Leach (Odonata: Aeschnidae), J. Anim. Ecol. 26, 1–69 (1957).CrossRefGoogle Scholar
  57. 57.
    A. Tjønneland, The flight activity of mayflies as expressed in some East African species. Univ. Bergen Arb. Naturv. R., 1, 1–88 (1960).Google Scholar
  58. 58.
    G. W. Green, The control of spontaneous locomotor activity inPhormia regina I. Locomotor activity patterns of intact flies. J. Insect Physiol., 10, 711–726 (1964).CrossRefGoogle Scholar
  59. 59.
    G. W. Green, The control of spontaneous locomotor activity inPhormia regina. II. Experiments to determine the mechanisms involved. J. Insect Physiol., 10, 727–752 (1964).CrossRefGoogle Scholar
  60. 60.
    R. L. Caldwell and H. Dingle, The regulation of cyclic reproductive and feeding activity in the milkweed bug, Oncopeltus. by temperature and photoperiod. Biol. Bull Wood’s Hole. 133, 510–525 (1967).CrossRefGoogle Scholar
  61. 61.
    M. F. Bennett and M. Renner, The collecting performance of honey bees under laboratory conditions. Biol. Bull. Wood’s Hole. 125,416–430 (1963).CrossRefGoogle Scholar
  62. 62.
    J. K. Nayar, The pupation rhythm in Aedes taeniorhynchus. II. Ontogenetic timing, rate of development, and the endogenous diurnal rhythm of pupation. Ann. ent. Soc. Amer., 60, 946–971 (1967).Google Scholar
  63. 63.
    E. Palmen, Diel periodicity of pupal emergence in natural populations of some chironomids. Ann. Zool-Bot. Soc. fenn. Vanamo. 17, 1–30 (1955).Google Scholar
  64. 64.
    E. Palmen, Diel periodicity of pupal emergence in some north European chironomids. Int. Congr. Ent. X. 2, 219 (1958).Google Scholar
  65. 65.
    O. Park, Nocturnalism—the development of a problem. Ecol Monographs. 10, 485–536 (1940).CrossRefGoogle Scholar
  66. 66.
    N. C. Morgan and A. B. Waddell, Diurnal variation in the emergence of some aquatic insects. Trans. R. ent. Soc. Lond., 113, 123–137 (1961).CrossRefGoogle Scholar
  67. 67.
    P. S. Corbet, The Biology of Dragonflies, Witherby, London (1962).Google Scholar
  68. 68.
    H. Kalmus, Periodizität und Autochronie als zeitregelnde Eigenschaftern der Organismen. Biol. gen., 11, 93–114 (1935).Google Scholar
  69. 69.
    W. J. Brett, Persistent diurnal rhythmicity in Drosophila emergence. Ann. ent. Soc. Amer., 48, 119–131 (1955).Google Scholar
  70. 70.
    C. S. Pittendrigh, The circadian oscillation in Drosophila pseudoobscura pupae: A model for the photoperiodic clock. Z. Pflanzenphysiol. 54, 275–307 (1966).Google Scholar
  71. 71.
    J. E. Harker, The effect of photoperiod on the developmental rate of Drosophila pupae. J. exp. Biol. 43, 411–421 (1965).Google Scholar
  72. 72.
    C. S. Pittendrigh, Circadian rhythm and the circadian organization of living systems. Cold Spring Harb. Symp. Quant. Biol., 25, 159–184 (1960).PubMedGoogle Scholar
  73. 73.
    C. S. Pittendrigh, On the temperature independence in the clock system controlling emergence time in Drosophila. Proc. nat. Acad. Sci. Wash., 40, 1018–1029 (1954).CrossRefGoogle Scholar
  74. 74.
    C. S. Pittendrigh and S. D. Skopik, Circadian Systems. V. The driving oscillation and the temporal sequence of development. Proc. nat. Acad. Sci. U.S.A., 65, 500 (1970).CrossRefGoogle Scholar
  75. 75.
    J. E. Harker, The effect of a biological clock on the developmental rate of Drosophila pupae. J. exp. Biol., 42, 323–431 (1965).PubMedGoogle Scholar
  76. 76.
    L. Rensing, Die Bedeutung der Hormone bei Steuerung circadianer Rhythmen. Zool. Jb. Abt. allg. Zool. Physiol. 71, 595–606 (1965).Google Scholar
  77. 77.
    L. Rensing and R. Hardeland, Zur Wirkung der circadianen Rhythmik auf der Entwicklung von Drosophila. J. Insect Physiol., 13, 1547–1568 (1967).CrossRefGoogle Scholar
  78. 78.
    L. Rensing, B. Tach and V. Bruce, Daily rhythms in the endocrine glands of Drosophila larva. Experientia. 21, 103–104 (1965).CrossRefGoogle Scholar
  79. 79.
    L. Rensing, Zur circadianen Rhythmik des Hormonsystems von Drosophila. Z. Zellforsch., 74, 539–558 (1966).PubMedCrossRefGoogle Scholar
  80. 80.
    U. Clever, Genactivitäten in den Riesenchromosomen von Chironomous tentans und ihre Beziehung zur Entwicklung. I. Genaktivierung durch Ecdyson. Chromosoma, 12, 607–675 (1961).PubMedCrossRefGoogle Scholar
  81. 81.
    H. J. Becker, Die Puffs der Speicheldrüsenchromosomen von Drosophila melanogaster Chromosoma, 13, 341–386 (1962).CrossRefGoogle Scholar
  82. 82.
    E. T. Nielsen and D. G. Evans, Duration of the pupal stage of Aedes taeniorhynchus with a discussion of the velocity of development as a function of temperature, Oikos. 11, 200–221 (1960).CrossRefGoogle Scholar
  83. 83.
    M. W. Provost and P. T. M. Lunn, The pupation rhythm in Aedes taeniorhyncus. I. Introduction. Ann. ent. Soc. Amer., 60, 138–149 (1967).Google Scholar
  84. 84.
    A. C. Neville, Daily growth layers in locust rubber-like cuticle, influenced by an external rhythm. J. Insect Physiol., 9, 177–186 (1963).CrossRefGoogle Scholar
  85. 85.
    A. C. Neville, Growth and deposition of resilin and chitin in locust rubber-like cuticle. J. Insect Physiol. 9, 265–278 (1963).CrossRefGoogle Scholar
  86. 86.
    A. C. Neville and B. M. Luke, A two-system model for chitin-protein complexes in insect cuticles. Tissue and Cell. 1, 689–707 (1969).PubMedCrossRefGoogle Scholar
  87. 87.
    A. C. Neville, Chitin lamellogenesis in locust cuticle. Q. J. Micr. Sci. 106,269–315 (1965).Google Scholar
  88. 88.
    B. Zelazny, Quoted in Neville, Cuticle ultrastructure in relation to the whole insect. Symp. R. ent. Soc. Lond., 5, 17–39 (1970).Google Scholar
  89. 89.
    A. C. Neville, Chitin orientation in cuticle and its control; in: Advances in Insect Physiology. 4, 213–286 (1967).Google Scholar
  90. 90.
    A. C. Neville, Circadian organization of chitin in some insect skeletons. Q. J. micr. Sci. 106, 315–325 (1965).Google Scholar
  91. 91.
    H. Dingle, R. L. Caldwell, J. B. Haskell, Temperature and circadian control of cuticle growth in the bug Oncopeltus fasciatus. J. Insect Physiol. 15, 373–378 (1969).CrossRefGoogle Scholar
  92. 92.
    J. W. Nowosielski and R. L. Patton, Daily fluctuations in blood sugar concentration in the house cricket, Gryllus domesticus L., Science. 144, 180–181 (1964).PubMedCrossRefGoogle Scholar
  93. 93.
    J. W. Nowosielski and R. L. Patton, Variation in the haemolymph protein, amino acid, and lipid levels in adult house crickets, Acheta domesticus L. of different ages. J. Insect Physiol. 11, 263–270 (1965).PubMedCrossRefGoogle Scholar
  94. 94.
    S. Takahashi and R. F. Harwood, Glycogen levels of adultCulex tarsalis in response to photoperiod. Ann. ent. Soc. Amer., 57, 621–623 (1964).Google Scholar
  95. 95.
    R. B. Turner and F. Acree, The effect of photoperiod on the daily fluctuations of haemolymph hydrocarbons in the American cockroach. J. Insect Physiol. 13, 519–522 (1967).PubMedCrossRefGoogle Scholar
  96. 96.
    J. Brady, Control of the circadian rhythm of activity in the cockroach. III. A possible role of the blood-electrolytes. J. exp. Biol. 49, 39–47 (1968).Google Scholar
  97. 97.
    B. J. Wall, Effects of dehydration and rehydration onPeriplaneta americana. J. Insect Physiol. 16, 1027–1042 (1970).PubMedCrossRefGoogle Scholar
  98. 98.
    R. J. Bartell and H. H. Shorey, A quantitative bioassay for the sex pheromone of Epiphyas postvittana (Lepidopt.) and factors limiting male responsiveness. J. Insect Physiol. 15, 33–40 (1969).CrossRefGoogle Scholar
  99. 99.
    T. L. Payne, H. H. Shorey and L. K. Gaston, Sex pheromones of noctuid moths: factors influencing antennal responsiveness in males of Trichoplusia N.I. J. Insect Physiol. 16, 1043–1055 (1970).PubMedCrossRefGoogle Scholar
  100. 100.
    L. Rensing, Zur circadianen Rhythmik des Sauerstoffverbrauches von Drosophila. Z. vergl. Physiol. 53, 62–83 (1966).CrossRefGoogle Scholar
  101. 101.
    L. Rensing, W. Brucken and R. Hardeland, On the genetics of a circadian rhythm in Drosophila. Experientia. 24, 509–510 (1968).PubMedCrossRefGoogle Scholar
  102. 102.
    H. Klug, Histo-physiologische Untersuchungen über die Aktivitàtsperiodik bei Carabiden, Wiss. Z. Humbolt-Univ. Berlin, 8, 405–434 (1958).Google Scholar
  103. 103.
    J. Brady, Histological observations on circadian changes in the neurosecretory cells of cockroach sub-oesophageal ganglia. J. Insect Physiol. 13, 201–213 (1967).PubMedCrossRefGoogle Scholar
  104. 104.
    M. Raabe, Recherches sur la neurosecretion dans la chaine nerveuse ventrale du Phasme, Clitumnus extradentatus: Variations d’activité des différentes elements neurosecreteurs. C.r-hebd. Séanc. Acad. Sci. Paris. 262, 303–306 (1966).Google Scholar
  105. 105.
    N. de Besse, Recherches histophysiologiques sur la neurosecretion dans la chaine nerveuse ventrale d’une blatte, Leucophaea maderae. C.r-hebd. Séanc. Acad. Sci. Paris. 260, 7014–7017 (1965).Google Scholar
  106. 106.
    B. Cymborowski and A. Dutkowski, Circadian changes in RNA synthesis in the neurosecretory cells of the brain and suboesophageal ganglion of the house cricket. J. Insect Physiol. 15, 1187–1197 (1969).PubMedCrossRefGoogle Scholar
  107. 107.
    A. B. Dutkowski and B. Cymborowski, Role of neurosecretory cells of pars intercerebralis in regulating RNA synthesis in some tissues of Acheta domesticus. J. Insect Physiol. 17, 99–108 (1971).PubMedCrossRefGoogle Scholar
  108. 108.
    B. Cymborowski and A. Dutkowski, Circadian changes in protein synthesis in the neurosecretory cells of the central nervous system of A cheta domesticus. J. Insect Physiol. 16, 341–348 (1970).CrossRefGoogle Scholar
  109. 109.
    L. Rensing, Circadiane Rhythmik von Drosophila—Speisheldrüsenin vivo, in vitro undnach Ecdysonzugabe. J. Insect Physiol. 15, 2285–2303 (1969).CrossRefGoogle Scholar
  110. 110.
    J. E. Harker, Diurnal rhythms. Ann. Rev. Ent., 6, 131–146 (1961).CrossRefGoogle Scholar
  111. 111.
    S. K. Roberts, Significance of endocrines and central nervous system in circadian rhythms, in: Circadian Clocks. J. Aschoff (ed.) (1965).Google Scholar
  112. 112.
    S. K. Roberts, Circadian activity rhythms in cockroaches. III. The role of endocrine and neural factors. J. cell comp. Physiol., 67, 473–486 (1966).Google Scholar
  113. 113.
    J. Nishiitsutsuji-Owu and C. S. Pittendrigh, Central nervous control of circadian rhythmicity in the cockroach. II. The pathway of light signals that entrain the rhythm. Z. vergl Physiol. 58, 1–13 (1968).CrossRefGoogle Scholar
  114. 114.
    J. Nishiitsutsuji-Owu and C. S. Pittendrigh, Central nervous control of circadian rhythmicity in the cockroach. III. The optic lobes, locus of the driving oscillation? Z. vergl. Physiol. 58, 14–46 (1968).CrossRefGoogle Scholar
  115. 115.
    J. E. Harker, Endocrine and nervous factors in insect circadian rhythms. Cold Spring. Harb. Symp. Quant. Biol., 25, 279–288 (1960).PubMedGoogle Scholar
  116. 116.
    J. Brady, How are insect circadian rhythms controlled? Nature, Lond., 223, 781–784 (1969).CrossRefGoogle Scholar
  117. 117.
    M. Fingerman, A. D. Lago and M. E. Lowe, Rhythms of locomotor activity and oxygen consumption of the grasshopper Romalea microptera. Am. Midi. Nat., 59, 58–67 (1958).CrossRefGoogle Scholar
  118. 118.
    B. Cymborowski, Investigations on the neurohormonal factors controlling circadian rhythm of locomotor activity in the house cricket(Acheta domesticus L.). I. The role of the brain and the suboesophageal ganglion. Zool. Poloniae. 20, 103–126 (1970).Google Scholar
  119. 119.
    J. Nishiitsutsuji-Owo, S. F. Petropulus and C. S. Pittendrigh, Central nervous control of circadian rhythmicity in the cockroach. I. Role of the pars intercerebralis. Biol. Bull. mar. biol. hab. Wood’s Hole. 133, 679–696 (1967).CrossRefGoogle Scholar
  120. 120.
    J. E. Steele, The action of the insect hyperglycaemic hormone. Gen. comp. Endocrinology. 3, 46–52 (1963).CrossRefGoogle Scholar
  121. 121.
    G. J. Goldsworthy, The action of hyperglycaemic factors from the corpus cardiacum of Locusta migratoria on glycogen phosphorylase. Gen. comp. Endocrinology. 14, 78–85 (1970).CrossRefGoogle Scholar
  122. 122.
    A. J. Haddow, Studies of the biting habits of African mosquitoes. An appraisal of methods employed, with special reference to the twenty-four-hour catch. Bull. ent. Res., 45, 199–242 (1954).CrossRefGoogle Scholar
  123. 123.
    A. J. Haddow, D.J. L. Casley, J. P. O’Sullivan, P. M. L. Ardoin, Y. Ssenkubuge and A. Kitma, Entomological studies from a high steel tower in Zika Forest, Uganda. II. The biting activity of mosquitoes above the forest canopy in the hour after sunset. Trans. R. ent. Soc. Lond., 120, 219–236 (1968).CrossRefGoogle Scholar
  124. 124.
    E. T. Neilsen, Twilight and the ‘crep’ unit. Nature, Lond., 190, 878 (1961).CrossRefGoogle Scholar
  125. 125.
    A. J. Haddow, The biting behaviour of mosquitoes and tabanids. Trans. R. ent. Soc. Lond., 113, 315–335 (1961).CrossRefGoogle Scholar
  126. 126.
    A. J. Haddow, Observations on the biting-habits of African mosquitoes in the genus Eretmapodites Theobald. Bull. ent. Res., 46, 761–771 (1956).CrossRefGoogle Scholar
  127. 127.
    G. A. H. McClelland, Observations on the mosquito Aedes (Stegomyia) aegypti (L) in East Africa. II. The biting cycle in a domestic population on the Kenya Coast. Bull. ent. Res., 50, 687–696 (1960).CrossRefGoogle Scholar
  128. 128.
    P. S. Corbet, The oviposition-cycles of certain sylvan culicine mosquitoes (Dipter: Culicidae) in Uganda. Ann. trop. Med. Parasit., 57, 371–381 (1963).PubMedGoogle Scholar
  129. 129.
    W. Hovanitz, Differences in the field activity of two female colour phases of Colias butterflies at different times of day. Contrib. Lab. Vertbr. Zool. Michigan 41, 1–37 (1948).Google Scholar
  130. 130.
    M. D. R. Jones, M. Hill and A. M. Hope, The circadian flight activity of the mosquitoAnopheles gambiae: Phase setting by the light regime. J. exp. Biol., 47, 503–511 (1967).PubMedGoogle Scholar
  131. 131.
    B. Taylor and M. D. R. Jones, The circadian rhythm of flight activity in the mosquito Aedes aegypti (L); The phase setting effects of light-on and light-off. J. exp. Biol. 51, 59–70 (1969).PubMedGoogle Scholar
  132. 132.
    J. D. Gillett, A. J. Haddow and P. S. Corbet, The sugar-feeding cycle in a cage-population of mosquitoes. Entomologia exp. appl. 5, 223–232 (1962).CrossRefGoogle Scholar
  133. 133.
    W. A. Rowley and C. L. Graham, The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 14, 1251–1257 (1968).PubMedCrossRefGoogle Scholar
  134. 134.
    W. A. Rowley and C. L. Graham, The effect of age on the flight performance of female Aedes aegypti mosquitoes. J. Insect Physiol. 14, 719–728 (1968).PubMedCrossRefGoogle Scholar
  135. 135.
    J. A. Downes, Habits and life cycle of Culicoides nubeculosis Mg. Nature, Lond., 166, 510–511 (1950).CrossRefGoogle Scholar
  136. 136.
    W. H. R. Lumsden, The crepuscular biting-activity of insects in the forest canopy in Bwamba, Uganda; a study in the relation to the sylvan epidemiology of yellow fever. Bull. ent. Res., 42, 721–760 (1952).CrossRefGoogle Scholar
  137. 137.
    R. A. Senior White, On the biting activity of three neotropical Anopheles in Trinidad, British West Indies. Bull. ent. Res., 43, 451–460 (1953).CrossRefGoogle Scholar
  138. J. D. Gillett, Hormonal mechanisms involved in the reproductive cycle of mosquitoes. Rep. E. Afr. Virus Res. Inst., 39–45 (195 7).Google Scholar
  139. 139.
    M. T. Gillies, Age groups and the biting cycle inAnopheles gambiae. A preliminary investigation. Bull. ent. Res., 48, 553–559 (1957).CrossRefGoogle Scholar
  140. 140.
    M. M. Lavoipierre, Presence of a factor inhibiting biting activity in Aedes aegypti. Nature, Lond., 182, 1567 (1958).CrossRefGoogle Scholar
  141. 141.
    A. N. Clements, The Physiology of Mosquitoes, Pergamon Press, London (1963).Google Scholar
  142. P. S. Corbet, The age-composition of biting mosquito populations according to time and level. Trans. R. ent. Soc. Lond., 113, 336–345 (1961).CrossRefGoogle Scholar
  143. 143.
    J. D. Gillett and A. J. Haddow, Laboratory observations on the oviposition- cycle in the mosquito Aedes (Stegomyia) africanus Theobald. Ann. trop. Med. Parasit., 51, 170–174 (1957).PubMedGoogle Scholar
  144. 144.
    G. A. H. McClelland, Field observations on periodicity and site preference in oviposition by Aedes aegypti (L) and related mosquitoes (Diptera: Culicidae) in Kenya. Proc. R. ent. Soc. Lond. (A) 43, 147–154 (1968).Google Scholar
  145. 145.
    A. J. Haddow and J. D. Gillett, Observations on the oviposition-cycle of Aedes aegypti (L). Ann. trop. Med. Parasit., 51, 159–169 (1957).PubMedGoogle Scholar
  146. 146.
    A. J. Haddow and J. D. Gillett, Laboratory observations on the oviposition-cycle in the mosquito Taeniorhynchus (Coquillettidia) fuscopennatus Theobald. Ann. trop. Med. Parasit., 52, 320–325 (1958).PubMedGoogle Scholar
  147. 147.
    J. D. Gillett, A. J. Haddow and P. S. Corbet, Observations on the oviposition-cycle of Aedes (Stegomyia) aegypti (L). Ann. trop. Med. Parasit., 53, 35–41 (1959).PubMedGoogle Scholar
  148. 148.
    J. D. Gillett, P. S. Corbet and A. J. Haddow, Observations on the oviposition-cycle of Aedes (Stegomyia) aegypti (L) III. Ann. trop. Med. Parasit., 53, 132–136 (1959).PubMedGoogle Scholar
  149. 149.
    J. D. Gillett, Contributions to the oviposition-cycle of the individual mosquitoes in a population. J. Insect Physiol., 8, 665–681 (1962).CrossRefGoogle Scholar
  150. 150.
    A. J. Haddow and Y. Ssenkubuge, Laboratory observations on the oviposition-cycle in the mosquito Anopheles (Cellia) gambiae. Ann. trop. Med. Parasit., 56, 352–355 (1962).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Company Ltd. 1973

Authors and Affiliations

  • Janet E. Harker
    • 1
  1. 1.Zoology DepartmentUniversity of CambridgeCambridgeUK

Personalised recommendations