RNA Polymerases and Controlling Factors from Plant Cell Nuclei

  • B. B. Biswas
  • H. Mondal
  • A. Ganguly
  • Asis Das
  • R. K. Mandal
Part of the Basic Life Sciences book series (BLSC, volume 3)


Transcriptional regulation in higher organisms occurs by activation or inactivation of entire chromosomes, large chromosomal segments, and possibly smaller units. The phenomenon of puffing (1), where fairly large sections of chromosomes are activated together, may indicate the expression of the functionally related clusters. That such clusters of genes actually occur in higher organisms has been shown (2). Crick’s (3) hypothesis that the function of most of the DNA is to regulate the activity of the rest of the DNA seems to originate from several lines of evidences. Britten and Davidson (4) suggested that the control is exerted by the extra DNA carried by higher organisms, especially by the repetitive DNA, and they pointed out the necessity of a sensor gene and integrator genes besides the regulator and structural genes. Georgiev et al. (5) have recently invoked similar types of multielemental control systems in eukaryotes. Thus inasmuch as different investigators have hypothesized a number of regulatory elements, regulation of the transcription process in the eukaryotes must be studied in detail.


Indoleacetic Acid Nonhistone Protein Acceptor Protein Chromosomal Nonhistone Protein Plant Cell Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Beerman. Genetics 54: 569 (1966).Google Scholar
  2. 2.
    M. Lezzi. Internat. Rev. Cytol. 29: 127 (1970).CrossRefGoogle Scholar
  3. 3.
    F. Crick. Nature 234: 25 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    R. J. Britten and E. H. Davidson. Science 165: 349 (1969).PubMedCrossRefGoogle Scholar
  5. 5.
    G. P. Georgiev, A. P. Ryskov, C. Coutelle, V. L. Manitieva, and E. R. Avakyan. Biochim. Biophys. Acta 259: 259 (1972).PubMedGoogle Scholar
  6. 6.
    C. C. Widnell and J. R. Tata. Biochim. Biophys. Acta 123: 478 (1966).PubMedGoogle Scholar
  7. 7.
    R. G. Roeder and W. J. Rutter. Nature 224: 234 (1969).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Mondal, R. K. Mandal, and B. B. Biswas. Biochem. Biophys. Res. Commun. 40: 1194 (1970).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Stein and P. Hausen. Europ. J. Biochem. 14: 270 (1970).PubMedCrossRefGoogle Scholar
  10. 10.
    E. D. Mauro, C. P. Hollenberg, and B. D. Hall. Proc. Natl. Acad. Sci. (USA) 69: 2818 (1972).CrossRefGoogle Scholar
  11. 11.
    J. Bonner. The Molecular Biology of Development, Oxford University Press, Oxford (1965).Google Scholar
  12. 12.
    J. A. V. Butler, E. W. Johns, and D. M. P. Phillips. Progr. Biophys. Mol. Biol. 18: 209 (1968).CrossRefGoogle Scholar
  13. 13.
    G. P. Georgiev. Ann. Rev. Genet. 3: 155 (1969).CrossRefGoogle Scholar
  14. 14.
    J. H. Frenster. Nature 206: 680 (1965).CrossRefGoogle Scholar
  15. 15.
    J. Paul and R. S. Gilmour. J.. Mol. Biol. 34: 305 (1968).PubMedCrossRefGoogle Scholar
  16. 16.
    S. C. R. Elgin, S. C. Froehner, J. E. Smart, and J. Bonner. In E. J. DuPraw (ed.), Advances in Cell Molecular Biology, Vol. 1, Academic Press, New York, p. 1 (1971).Google Scholar
  17. 17.
    H. Mondal, R. K. Mandal, and B. B. Biswas. Europ. J. Biochem. 25: 463 (1972).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Mondal, A. Ganguly, A. Das, R. K. Mandal, and B. B. Biswas. Europ. J. Biochem. 28: 143 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Mondal, R. K. Mandal, and B. B. Biswas. Nature New Biol. 240: 111 (1972).PubMedGoogle Scholar
  20. 20.
    A. G. Mathysse and C. Phillips. Proc. Natl. Acad. Sci. (USA) 63: 897 (1969).CrossRefGoogle Scholar
  21. 21.
    F. Gissinger and P. Chambon. Europ. J. Biochem. 28: 277 (1972).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Stellwagen and R. Cole. Ann. Rev. Biochem. 38: 951 (1969).PubMedCrossRefGoogle Scholar
  23. 23.
    R. S. Gilmour and J. Paul. FEBS Letters 9: 242 (1970).PubMedCrossRefGoogle Scholar
  24. 24.
    T. C. Spelsberg and L. Hnilica. Biochem. J. 120: 435 (1970).PubMedGoogle Scholar
  25. 25.
    C. Ten, C. Teng, and V. J. Allfrey. J.. Biol. Chem. 246: 3597 (1971).Google Scholar
  26. 26.
    B. J. Davis. Ann. N. Y. Acad. Sci. 121: 404 (1964).CrossRefGoogle Scholar
  27. 27.
    K. Weber and M. Osborn. J.. Biol. Chem. 244: 4406 (1969).PubMedGoogle Scholar
  28. 28.
    D. Gillespie and S. Spiegelman. J.. Mol. Biol. 12: 829 (1965).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Attardi, P. C. Huang, and S. Kabat. Proc. Natl. Acad. Sci. (USA) 54: 185 (1965).CrossRefGoogle Scholar
  30. 30.
    J. B. Boyd and H. K. Mitchell. Anal. Biochem. 14: 441 (1966).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • B. B. Biswas
    • 1
  • H. Mondal
    • 1
  • A. Ganguly
    • 1
  • Asis Das
    • 1
  • R. K. Mandal
    • 1
  1. 1.Bose InstituteCalcuttaIndia

Personalised recommendations