Advertisement

Electric and Magnetic Moments of Small Metallic Particles in the Quantum Size Effect Regime

  • F. Meier
  • P. Wyder

Abstract

For macroscopic metal samples of the size used in most experiments the periodic boundary conditions are the appropriate ones to use in calculating electronic properties. In a naive free-electron model the energy levels are given by ε n = h 2 π 2 n 2/(2m*L 2), where L is the linear dimension of the system, m* is the effective mass of the electron, and n 2 = n 2 x + n 2 + n 2 y + n 2 z , with the n i integers. The spacing between two neighboring levels at the Fermi energy εF is then given by Δdeg = (h 2π2 n F /m*L 2), with n F = p F Lh (p F is the Fermi momentum). However, if we consider the electron levels of sufficiently minute metallic particles, imperfections in the shape of such particles will remove the artificial degeneracy of the system due to the periodic boundary conditions. Then the average distance between two levels at the Fermi surface is Δ = Δdeg/(4πn 2 F/8), which is, of course, just the inverse of the density of states v at the Fermi surface. In a particle of volume V = L 3 containing N electrons we therefore have for spin degenerate levels
$$\Delta = {v^{ - 1}} = {\pi ^2}{h^3}/V{p_{\text{F}}}{m^*} = \tfrac{4}{3}{\varepsilon _{\text{F}}}/N$$
(1)

Keywords

Periodic Boundary Condition Fermi Surface Fermi Momentum Average Magnetic Moment Small Gold Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Fröhlich, Physica 4, 406 (1937).ADSMATHCrossRefGoogle Scholar
  2. 2.
    F. Hund, Ann. Physik 32, 102 (1938).ADSCrossRefGoogle Scholar
  3. 3.
    R. Kubo, J. Phys. Soc. Japan 17, 975 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    L.P. Gor’kov and G.M. Eliashberg, Soviet Phys.—JETP 21, 940 (1965).ADSGoogle Scholar
  5. 5.
    R. Denton, B. Mühlschlegel, and D.J. Scalapino, Phys. Rev. Lett. 26, 707 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    C. Taupin, J. Phys. Chem. Sol. 28, 41 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    S. Kobayashi, T. Takahashi, and W. Sasaki, J. Phys. Soc. Japan 31, 1442 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    R. Dupree and M.A. Smithard, J. Phys. C: Proc. Phys. Soc., London 5, 408 (1972).ADSGoogle Scholar
  9. 9.
    F. Meier and P. Wyder, Phys. Lett. 39A, 51 (1972).ADSGoogle Scholar
  10. 10.
    R.D. Maurer, J. Appl. Phys. 29, 1 (1958).ADSCrossRefGoogle Scholar
  11. 11.
    R. Doremus, J. Chem. Phys. 40, 2389 (1964).ADSCrossRefGoogle Scholar
  12. 12.
    S. Strässler, M.J. Rice, and P. Wyder, Phys. Rev. B 6, 2575 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Rice and J. Bernasconi, Phys. Rev. Lett. 29, 113 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • F. Meier
    • 1
  • P. Wyder
    • 1
  1. 1.Fysisch LaboratoriumKatholieke UniversiteitNijmegenThe Netherlands

Personalised recommendations