Picosecond Studies of Ultrafast Molecular Processes in Liquids

  • T. J. Chuang
  • K. B. Eisenthal


Picosecond light pulses generated from a mode-locked Nd-glass or ruby laser have been used to study a number of ultrafast physical and chemical processes. Experiments on two such phenomena, namely, orientational relaxation and electron transfer in liquids are described here. The effects of hydrogen bonding and the structure of the liquids on the molecular rotational motion as well as the kinetics of the excited charge-transfer complex formation are discussed.


Excitation Pulse Probe Pulse Formation Curve Ruby Laser Orientational Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g., A. J. DeMaria, W. H. Glenn, Jr., M. J. Brienza and M. E. Mack, Proc. IEEE, 57, 2 (1969).CrossRefGoogle Scholar
  2. 2.
    R. G. Brewer and C. H. Lee, Phys. Rev. Letters, 21, 267 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    R. L. Carman, M. E. Mack, F. Shimizu and N. Bloembergen, Phys. Rev. Letters, 23, 1327 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro and K. W. Wecht, Appl. Phys. Letters, 11, 216 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    D. Rehm and K. B. Eisenthal, Chem. Phys. Letters 9, 387 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    D. Ricard, W. H. Lowdermilk and J. Ducuing, Chem. Phys. Letters, 16, 617 (1972); D. von der Linde, A. Lanbereau and W. Kaiser, Phys. Rev. Letters 26, 954 (1971); R. R. Alfano and S. L. Shapiro, Phys. Rev. Letters 26, 1247 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    J. W. Shelton, J. A. Armstrong, IEEE J. Quantum Electr. QE-3, 696 (1967); M. A. Duguay and J. W. Hansen, Opt. Comm. 1, 254 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    P. M. Rentzepis and C. J. Mitschele, Anal. Chem. 42, 20 (1970) and references therein.CrossRefGoogle Scholar
  9. 9.
    T. J. Chuang and K. B. Eisenthal, Chem. Phys. Letters, 11, 368 (1971); K. B. Eisenthal and K. H. Drexhage, J. Chem. Phys. 51, 5720 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    T. J. Chuang and K. B. Eisenthal, J. Chem. Phys. 59, 2140 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    T. J. Chuang, G. W. Hoffman and K. B. Eisenthal (In preparation).Google Scholar
  12. 12.
    T. J. Chuang and K. B. Eisenthal, J. Chem. Phys. 57 5094 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    L. V. Levshin and D. M. Akbarova, J. Appl. Spectr. (USSR) 3, 326 (1965) (Eng.).ADSCrossRefGoogle Scholar
  14. 14.
    P. Debye, Polar Molecules, Dover Publication, London, 1929, p. 84.MATHGoogle Scholar
  15. 15.
    G. E. Pimentel and A. L. McClellan, The Hydrogen Bond, Freeman, San Francisco, 1960, p. 267.Google Scholar
  16. 16.
    H. Leonhart and A. Weller, Ber. Bunsenges, Phys. Chem. 67, 791 (1963); A. Weller, Pure Appl. Chem. 16, 115 (1968).Google Scholar
  17. 17.
    R. Potashnik, C. R. Goldschmidt, M. Ottolenghi and A. Weller, J. Chem. Phys. 55, 5344 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    D. Rehm and A. Weller, Ber. Bunsenges, Phys. Chem. 73, 834 (1969).Google Scholar
  19. 19.
    R. M. Noyes, Progr. Reaction Kinetics, 74, 129 (1961).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • T. J. Chuang
    • 1
  • K. B. Eisenthal
    • 1
  1. 1.IBM Research LaboratorySan JoseUSA

Personalised recommendations