Skip to main content

The Encoding of the Receptor Potential into Impulse Patterns of Muscle Spindle Afferents of Cats

  • Chapter
Motor Control

Abstract

The muscle spindle receptors are activated if their aequatorial region is stretched above the threshold value The response of the receptor potential of muscle spindle afferents in deefferented muscles probably depends on the muscle length according to a second order linear differential equation. The non-linear components observed in the responses of afferent fibres (impulse patterns) might be caused by three factors:

  1. (1)

    A possible non-linear transmission along the chain: stimulus apparatus—extrafusal muscle — muscle spindle.

  2. (2)

    Non-linear mechanical properties of the muscle spindle.

  3. (3)

    Non-linear components of the encoder process, i.e. a non-linear transformation of the slow receptor potential of the receptive fiber endings into the sequence of impulses conducted along the axon

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Crowe, A. (1968). A mechanical model of the mammalian muscle spindle. J.Theor.Biol. 21: 21–41

    Article  PubMed  Google Scholar 

  • Dabbert, H., Grüsser, O.-J. (1968). Reaktionen primärer und sekundärer Muskelspindelafferenzen auf sinusförmige mechanische Reizung. II. Anderung der statischen Vordehnung. Pflügers Arch.Physiol. 304: 258–270

    Article  Google Scholar 

  • Eysel, U.Th. (1971). Computer simulation of the impulse pattern of muscle spindle afferents under static and dynamic conditions. Kybernetik 8: 171–179

    Article  PubMed  Google Scholar 

  • Eysel, U.Th., GRÜSSER, O.-J. (1970). The impulse pattern of muscle spindle afferents - A statistical analysis of the response to static and sinusoidal stimulation. Pflügers Arch. Physiol. 315: 1–26

    Article  Google Scholar 

  • Eysel, U.Th., Grusser, O.-J. (1973). The change of the impulse pattern of muscle spindle afferents by antidromic impulses. Kybernetik (in press)

    Google Scholar 

  • Grüsser, O.-J., Thiele, B. (1966). Reaktionen primärer und sekundärer Muskelspindelafferenzen auf sinusförmige mechanische Reizung. I. Variation der Sinusfrequenz. Pflügers Arch.Physiol. 300: 161–184.

    Google Scholar 

  • Henatsch, H.D. (1967). Instability of the proprioceptive length servo: Its possible role in tremor phenomena. In: Neurophysiological basis of normal and abnormal motor activities. Proceedings of the 3rd Symposium of Parkinsons’ disease, ed. M.D. Yahr and D.P. Purpura, p.75–90. Hewlett: Raven press

    Google Scholar 

  • Matthews, B.H.C. (1931). The response of a muscle spindle during active contraction of a muscle. J.Physiol. (Lond.) 72: 153–174

    Google Scholar 

  • Matthews, B.H.C. (1933). Nerve endings in mammalian muscle. J.Physiol.(Lond.) 78: 1–53

    Google Scholar 

  • Matthews, P.B.C. (1964). Muscle spindles and their motor control. Physiol.Rev. 44: 219–288

    PubMed  Google Scholar 

  • Matthews, P.B.C., Stein, R.B. (1969). The sensitivity of muscle spindle afferents to small sinusoidal changes of length. J.Physiol.(Lond.) 200: 723–743

    Google Scholar 

  • Paintal, A.S. (1959a). Intramuscular propagation of sensory impulses. J.Physiol. (Lond.) 148: 240–251

    Google Scholar 

  • Paintal, A.S. (1959b). Facilitation and depression of muscle stretch receptors by repetitive antidromic stimulation, adrenaline, and asphyxia. J.Physiol. (Lond.) 148: 252–266.

    Google Scholar 

  • Poppele, R.E., Bowman, R.J. (1970). Quantitative description of linear behavior of mammalian muscle spindles. J.Neurophysiol. 33: 59–72

    PubMed  Google Scholar 

  • Rudjord, T. (1970a). A second order mechanical model of muscle spindle primary endings. Kybernetik 6: 205–213

    Article  PubMed  Google Scholar 

  • Rudjord, T. (1970b). A mechanical model of the secondary endings of mammalian spindles. Kybernetik 7: 122–128

    Article  PubMed  Google Scholar 

  • Schäfer, S.S., Schäfer, S. (1968). Die Eigenschaften einer primären Muskelspindelafferenz bei rampenförmiger Dehnung und ihre mathematische Beschreibung. Pflügers Arch.Physiol. 310: 206–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Grüsser, OJ., Hohne-Zahn, H., Jahn, S.A., Pellnitz, K. (1973). The Encoding of the Receptor Potential into Impulse Patterns of Muscle Spindle Afferents of Cats. In: Gydikov, A.A., Tankov, N.T., Kosarov, D.S. (eds) Motor Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4502-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4502-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4504-6

  • Online ISBN: 978-1-4613-4502-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics