Motor Control pp 217-234 | Cite as

The Control of Posture and Locomotion

  • V. S. Gurfinkel
  • M. L. Shik


In this paper we have attempted to concentrate not so much on the apparent differences between standing and walking but rather on the common mechanisms shared by both actions. The analysis of the natural movements shows that during these two actions there is not only a successive change of postural and motor stabilisation modes but also a simultaneous realization of these two modes. In a multicomponent system with an elaborate communication network such as the vertebrate locomotor apparatus, the movement of some components provoke a corresponding reaction in other components. When precise movements are produced there arises the necessity to prevent the reactive movements of distant components by stabilizing their position. This postural activity is carried out simultaneously with the macromovements.


Hind Limb Postural Activity Stance Phase Swing Phase Postural Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal G.C., Berman B.N. and Stark L. (1970). Studies in postural control system. Part I. Torque disturbance input. IEEE Trans.on system science and cybernetics, v.SSC-6, 2, 116–121.CrossRefGoogle Scholar
  2. Agarwal G.C., Berman B.M., L Hnberg P. and Stark L (1970). Studies in postural control systems. Part. II. Tendon Jerk Input. IEEE Trans, on system science and cybernetics, v.SSC-6, 2, 122–126.Google Scholar
  3. Bard P. and Macht M.B. (1958). The behaviour of chronically decerebrate cats. In Neurological basis of behaviour, ed. G.E.W. Wolstenholme and C.M.O. O’Connor, Ciba Found. Symp. pp. 55–71. London: Churchill.Google Scholar
  4. Barilari M.G. and Knypers G.J.M. (1969). Propriospina1 fibers interconnecting the spinal enlargements in the cat, Brain Res. 14: 321–330.CrossRefGoogle Scholar
  5. Baron J.-B. (1951). Relation entre les muscles moteurs oculaires, les nageoires et l’equilibre des poissons.- C.R.Acad.Sc., 231: 1087–1088.Google Scholar
  6. Belenkiy V.E., Gurfinkel V.S. and Paltsev R.I. (1967). On the elements of voluntary movement control. Biofizika, 12: 135–141 (in Russian).Google Scholar
  7. Brown M.C., Goodwin G.N. and Matthews P.B.C. (1969). After effects of fusimotor stimulation on the response of muscle spindle primary afferent endings. J.Physiol. (Lond.) 205: 677–694.Google Scholar
  8. Brown T.G. (1914). On the nature of the fundamental activity of the nervous centres: together with an analysis of the rhythmic activity in progression and a theory of evolution of the function in the nervous system. J.Physiol.(Lond.) 48: 18–46.Google Scholar
  9. Budakowa N.N. (1971) Stepping movements evoked by a rhythmic stimulation of a dorsal root in mesencephalic cat. Sechenov Physiol. J. USSR, 57: 1632–1640 (in Russian).Google Scholar
  10. Elner A.M., Popov K.E. and Gurfinkel V.S. (1972). Changes of the stretch reflex state during the muscle activity in man. In Abstr. Sec.Intern.Symp.Motor Control, Varna 1972, p.50 (in Russian).Google Scholar
  11. Engberg I. and Lundberg A. (1969). An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta physiol. scand., 75: 614–630.PubMedCrossRefGoogle Scholar
  12. Feldman J.L. (1972). Neural population and motoneurone pools. In Abstr. IV Intern.Biophys.Congr. Moscow 1972, vol.3, 293–294.Google Scholar
  13. Gambarjan P.P., Orlovsky G.N., Protopopova T.J., Severin F.V. and Shik M.L. (1971). The activity of muscles during different gaits and adaptive changes of moving organs in family Felidae. Morphology and Ecology of Vertebrates. Proc. Inst.Zool.Acad.Sci. USSR, 48: 220- 239 (in Russian)Google Scholar
  14. Gantchev G.N., Draganova N. and Dunev S. (1972). The role of visual information and ocular movements for the maintenance of body equilibrium. Agressologie, 13, B: 55–61.Google Scholar
  15. Gray J. (1950). The role of peripheral sense organs during locomotion in vertebrates. In Physiological Mechanisms in Animal Behaviour. Symp.Soc.Exp.Biol., No. 4, 112–126. Cambridge: Univ.Press.Google Scholar
  16. Grillner S. (1969). Supraspinal and segmental control of static and dynamic gamma-motoneurones in the cat. Acta physiol.scand. Suppl. 327: 1–34.Google Scholar
  17. Grillner S. and Shik M.L.(1972). On the deoheading control of the lumbosacral spinal cord from the “mesencephalic locomotor region”. Acta physio1.scand.(in press).Google Scholar
  18. Grossman R.G.(1950). Effects of stimulation of non-specific thalamic system on locomotor movements in cat.J Neurophysiol., 21: 85–93.Google Scholar
  19. Gurfinkel V.S. and Elner A.M.(1971). Visual control in equilibrium regulation. In “Visual information processing and Control of Motor Activity”. Intern.symp. Sofia. 1969, pp.331–336. Sofia: Publish.Bulg.Acad.Sc.Google Scholar
  20. Gurfinkel V.S., Kots Y.M., Paltsev E.I. and Feldman A.G. (1971). The compensation of respiratory disturbances of the erect posture of man as an example of the organization of interarticular interaction. In Models of the structural-functional organization of certain biological systems, pp.382–395. Cambridge,Mass.MIT Press.Google Scholar
  21. Gurfinkel V.S., Kots Y.M. and Shik M.L. (1965). The regulation of human posture. Moscow, Nauka (in Russian).Google Scholar
  22. Hill D.K.(1968). Tension due to interaction between the sliding filaments in resting striated muscle.The effect of stimulation. J.Physiol.(Lond.) 199: 637–684.Google Scholar
  23. Hinsey J.C., Ransun B.W. and Mcnattin R.F.(1930). The role of the hypothalamus and mesencephalon in locomotion. Arch.Neurol.Psychiat.(Chicago). 23: 1–43.Google Scholar
  24. Hongo Z., Jankowska E. and Lundberg A.(1969). The rubrospinal tract. Brain Res., 7, 344–364; 365–391.Google Scholar
  25. Jankowska E., Jukes M.G.M., Lund S. and Lundberg A.(1967). The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta physiol.scand., 70: 369–388.PubMedCrossRefGoogle Scholar
  26. Jankowska E., Jukes M.G.M., Lund S. and Lundberg A.(1967). The effect of DOPA on the spinal cord. 6. Half-center organization of interneurones transmitting effects from the flexor reflex afferents. Acta physiol.scand. 70: 389–402.PubMedCrossRefGoogle Scholar
  27. Jankowska E. and Roberts W.J.(1972). An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat. J.Physiol. (Lond.), 222: 597–622.Google Scholar
  28. Kulagin A.S. and Shik M.L.(1970). Interaction of symmetric extremities during controlled locomotion. Biofizika, 15: 164–170. (In Russian).PubMedGoogle Scholar
  29. Lippold O.C.I. (1970). Oscillation in the stretch reflex arc and the origin of the rhithmical,8–12 c/s component of physiological tremor. J.Physiol.(Lond.), 206: 359–392.Google Scholar
  30. Lundberg A. (1969). Reflex control of stepping. In The Nansen Memorial Lecture V.Oslo,Universitetsforlaget.Google Scholar
  31. Mamasakhlisov G.V., Elner A.M. and Gurfinkel V.S.(1972). Participation of different modality afferentation in regulation of vertical posture of man. In Abstr.Sec. Intern.Symp.Motor Control. Varna,1972, p.35 (In Russian).Google Scholar
  32. Marshall J. and Walsh E.G. (1956). Physiological Tremor. J.Neurol.Neurosurg.Psychiat., 19: 260–267.PubMedCrossRefGoogle Scholar
  33. Matthews P.B.C. (1969). Evidence that the secondary as well as the primary endings of the muscle spindles may be responsible for the tonik stretch reflex of the decerebrate cat. J.Physiol.(Lond.), 204: 365–393.Google Scholar
  34. Merton P.A. (1953). Speculations on the servocontrol of movement. In The spinal cord. Ciba Symposium, p.247- 260, London: Churchill.Google Scholar
  35. Miller S. (1970). Excitatory and inhibitory propriospinal pathways from lumbo-sacral to servical segments in the cat. Acta physiol.scand., 80: 25A-26A.PubMedCrossRefGoogle Scholar
  36. Nashner L.M. (1970). Sensory feed-back in human posture control. Thesis. MIT.Google Scholar
  37. Nieuwenhuys R. (1964). Comparative ahatomy of the spinal cord. In Organization of the spinal cord, Progress in Brain Res., ed. J.C. Ecceles and J.R. Schadé, vol.11, 1–57. Amsterdam: Elsevier.CrossRefGoogle Scholar
  38. Njiokiktjen Ch. (1972). The influence of vision on the vestibulospinal reflex. Agressologie, 13, C, 91–94.Google Scholar
  39. Orlovsky G.N. (1970). The activity of reticulospinal neurones during locomotion. Biofizika, 15, 728–737. (in Russian).Google Scholar
  40. Orlovsky G.N. and Pavlova G.A. (1972). Vestibular responses in neurones of descending pathways during locomotion. Neuro-physiologia (Kiev), 4: 311–316. (In Russian)Google Scholar
  41. Orlovsky G.N., Severin F.V. and Shik M.L. (1966). The influence of speed and load on the coordination of movements during the running of the dog. Biofizika, 11: 364–366. (in Russian)Google Scholar
  42. Philipson M. (1905). L’autonomie et la centralization dans le systeme nerveux des animaux. Travaux du Labor. de Physiol.,Inst.Solvay, Bruxelles, 7: 1–208.Google Scholar
  43. Roaf H.E. and Sherrington C.S. (1910). Further remarks on the spinal mammalian preparation. Quart. 3.Physiol., 3: 209–211.Google Scholar
  44. Scheibel M.E. and Scheibel A.B. (1966). Spinal motoneurones, interneurones and Renshaw cells. A Golgi study. Archs. ital. Biol., 104: 328–353.Google Scholar
  45. Shambes G.M. (1969). Influence of the fusimotor system on stance and volitional movement in normal man. Am. J. Phys. Med., 48: 225–236.PubMedGoogle Scholar
  46. Sherrington C.S. (1910). Flexion-reflex of the limb, crossed extension-reflex and reflex stepping and standing. J.Physiol.(Lond.), 40: 28–121.Google Scholar
  47. Shik M.L. (1971). The controlled locomotion of the mesencephalic cat. In Abstr. XXV Intern.Congr.Physiol. Sci.,Munjch, vol.8, p. 104–105.Google Scholar
  48. Shik M.L. and Orlovsky G.N. (1965). Interlimb coordination during the running of the dog. Biofizika, 10: 1037–1047. (in Russian).PubMedGoogle Scholar
  49. Shik M.L., Orlovsky G.N. and Severin F.V. (1966). The organization of locomotor synergy. Biofizika, 11: 879–886. (in Russian).PubMedGoogle Scholar
  50. Shik M.L., Orlovsky G.N. and Severin F.V. (1968). The locomotion of a mesencephalic cat elicited by pyramidal stimulation. Biofizika, 13: 127–135. (in Russian)PubMedGoogle Scholar
  51. Shik M. L., Severin F.V. and Orlovsky G.N. (1966). The control of walking and running by the electrical stimulation of the midbrain. Biofizika, 11: 659–666. (in Russian).PubMedGoogle Scholar
  52. Shimamura M. and Livingston R.B. (1963). Longitudinal conduction systems serving spinal and brain-stem coordination. J.Neurophysio1., 26: 258–272.Google Scholar
  53. Sirota M.G. and Shik M.L. (1972). Cat locomotion induced by stimulation through the elecrode implanted in the midbrain. In Abstr. IV.Intern.Biophys.Congr., Moshow,1972, vol.4, p.139.Google Scholar
  54. Sterling P. and Knypers H.G.J.M. (1968). Anatomical organization of the brachial spinal cord of the cat. III. The propriospinal connections. Brain Res., 7: 419–443.PubMedCrossRefGoogle Scholar
  55. Szekely G. and Czeh G. (1971). Muscle activities of partially innervated limbs during locomotion in Ambystoma. Acta physio1.Acad.Sci.Hung., 40: 269–286.Google Scholar
  56. Taub E. and Berman A.J. (1968). Movement and learning in the absence of sensory feedback. In The Neuropsychology of Spatially Oriented Behaviour, ed. S.J. breedmann, p.173–192. Homewood, III, Dorsey Press.Google Scholar
  57. Tower S.S. (1936). Extrapyramidal action from the cat’s cerebral cortex: motor and inhibitory. Brain, 59: 408–444.CrossRefGoogle Scholar
  58. Viala D. and Buser P. (1971). Modalités d’obtention de rhythmes locomoteurs chez le lapin spinal par traitements pharmacologiques. (DOPA, 5-HTP, d-amphétamine). Brain Res., 35: 151–165.PubMedCrossRefGoogle Scholar
  59. Waller W.H. (1940). Progression movements elicited by subthalamic stimulation. J.Neurophysio1., 3: 300–307Google Scholar
  60. Westman J. and Bowsher D. (1971). The fine structure of “non-specific” grey matter (laminae V and VII) in the cat spinal cord. Exp.Brain Res., 12: 379–388.CrossRefGoogle Scholar
  61. Woods J.W. (1964). Behaviour of chronic decerebrate rats. J.Neurophysiol., 27: 635–644.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • V. S. Gurfinkel
    • 1
  • M. L. Shik
    • 1
  1. 1.Institute of the Problems of Information TransmissionMoscowUSSR

Personalised recommendations